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SUMMARY 
 
 
 

Synthetic messenger RNA (mRNA) produced via in vitro transcription (IVT 

mRNA) has emerged as an appealing tool for the transient introduction of genes, 

particularly for vaccination applications. The interaction that IVT mRNA has with the 

innate immune system is centrally important to its performance as a vaccine.  These 

innate immune responses can both interfere with the expression of the encoded 

antigenic protein and direct development of adaptive immunity.  The objective of this 

thesis is to investigate the innate immune responses to IVT mRNA and to identify 

strategies to modulate these immune responses.  

We first demonstrated that substitution of the modified bases 5-methylcytosine 

and pseudouridine in IVT mRNA consistently reduces antiviral cytokine responses but 

affects transgene expression in a gene-specific manner. To assess the pathogen 

recognition receptors involved in detection of IVT mRNA, we developed proximity 

ligation assays, which allowed histological identification of PRR signaling complexes.  

We used these assays to identify that nanoparticle-mediated delivery modified PRR-

activation following intramuscular delivery compared to delivery of the naked IVT mRNA 

molecule. Lastly, we developed a strategy to program the immunostimulatory properties 

of IVT mRNA by tethering adjuvants directly to the molecule.  We show that upon 

intramuscular injection, the combination delivery of a TLR7 adjuvant and IVT mRNA lead 

to heightened local antiviral responses when delivered tethered, rather than as a 

cocktail.  This work provides a foundation for the modulation and systematic study of IVT 

mRNA’s interaction with the innate immune system.  Insights gained from this work may 

help direct and advance the design of IVT mRNA sequences for vaccination 

applications.  
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CHAPTER 1 

INTRODUCTION 

 The work presented here contains excerpts from the publication: 

Loomis, K.H., Kirschman J.L., Bhosle S., Bellamkonda, R.V., and Santangelo PJ. 

Strategies for modulating innate immune activation and protein production of in vitro 

transcribed mRNAs. J. Mater. Chem. B, DOI:10.1039/C5TB01753J. (2015). 

1.1 Principles of vaccination 
Vaccines have prevented a countless number of deaths since their widespread 

adoption.  Yet, infectious diseases are still responsible for one-third of all deaths and are 

the leading cause of childhood death in developing countries (1).  Many of these 

diseases lack any preventative treatment.  In addition, vaccination could potentially 

prevent or treat autoimmune diseases, cancers, and allergies. 

The ultimate goal of vaccine design is to generate protective immunity against a 

pathogen.  Successful protection may require specific types of adaptive immune 

responses for a pathogen. For example, vaccines targeting respiratory infections such 

as influenza mainly protect through immunoglobulin G serum antibodies, while vaccines 

targeting intestinal diseases such as cholera largely protect through immunoglobulin A 

gut antibodies (2).  

Innate immune responses to a vaccine inform adaptive immune responses (3).  

Pathogen-recognition receptors (PRRs) recognize pathogen-associated molecular 

patterns (PAMPs), such as viral nucleic acids, to direct the formation of adaptive immune 

responses.   

http://dx.doi.org/10.1039/2050-7518/2013
http://dx.doi.org/10.1039/C5TB01753J
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1.2 Current vaccine classifications 

Several broad categories for vaccines are clinically used. These include live-

attenuated, inactivated, and sub-unit vaccines.   

1.2.1 Live attenuated vaccines 

Live-attenuated vaccines generally elicit strong cellular and humoral immune 

responses to generate robust protective immunity.  This class of vaccine is generated by 

weakening a pathogen, typically through repeated culture passage.  However, as the 

pathogen is still active, it can pose safety risks.  For example, live-attenuated vaccines 

for highly virulent diseases such as the human immunodeficiency virus (HIV) are difficult 

to declare sufficiently safe. Additionally, as temperature-controlled storage may be 

required, transport, delivery, and storage of these vaccines can impede their 

implementation.  Examples of this approach include typhoid, mumps, and rubella 

vaccines (4).   

1.2.2 Inactivated vaccines 

Inactivated vaccines are a safer and more stable alternative to live-attenuated 

vaccines since the pathogens are killed.  Inactivation is accomplished through heat, 

radiation, or chemical exposure.  One limitation is that inactivated pathogens generally 

lead to a weaker immune response than live-attenuated vaccines, such that repeated 

boosters of the vaccine are often necessary.  This class of vaccine tends to function 

through development of humoral immunity and is associated with lower cell-mediated 

immune responses.  Inactivated pathogens have been used in vaccines to prevent polio, 

hepatitis A, and diphtheria (4).   
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1.2.3 Subunit vaccines 

Subunit vaccines offer a further reduced risk of adverse reactions to inactivated 

vaccines.  Antigenic subunits of pathogens (antigenic proteins or polysaccharides) are 

isolated and conjugated to other proteins or immune stimulating toxins.  These vaccine 

components can be grown in recombinant systems or isolated from cultured pathogens.  

Similar to inactivated vaccines, subunit vaccines often require repeated boosts to 

develop protective immunity.  Moreover, they lead to generally weak cellular immune 

responses.  Subunit vaccines are currently used for hepatitis B and Haemophilus 

influenza type B  (4).  

1.3 Challenges facing future development of vaccines 

Are current strategies for vaccine design appropriate for preventing the remaining 

diseases that lack a preventative measure?  Previous vaccine strategies primarily rely 

upon humoral rather than cellular immunity to instill immunological protection (5).  While 

these strategies have succeeded in preventing many infectious diseases, they have met 

limited success against infections such as malaria, HIV, and tuberculosis (6, 7).  Indeed, 

a multitude of other infectious diseases, autoimmune diseases, and cancers remain 

potential targets for vaccine research and development.   

There are several challenges facing vaccine development given our current 

toolbox:  

• pathogens are difficult to grow in vitro  

• pathogens are dangerous to grow in vitro 

• pathogens or diseases have extensive antigen variability (e.g., cancer or HIV) 
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• pathogens have an intracellular phase in the host, and thus require developing 

cellular immune responses in addition to, or instead of, antibody-mediated 

responses   

• vaccine development is not rapid enough to properly respond to quickly mutating 

diseases (e.g., influenza) (4, 8)   

1.4 Nucleic acids as next generation vaccines 

Nucleic acid vaccines present a safe, non-live approach for vaccination.  

Primarily researched nucleic acid vaccines include plasmid DNA and IVT mRNA. These 

platforms address many of the present challenges associated vaccine design. Nucleic 

acid vaccines deliver the genetic form of antigenic protein(s), directing antigen 

production in the host.  As nearly cell-free systems produce nucleic acid-based vaccines, 

their production is rapid and relatively easy compared to other vaccine classifications. 

The ease in production also enables this platform to address antigenic variability in 

pathogens, as multiple IVT mRNA sequences can be manufactured with relative ease.  

Nucleic acid vaccines are also associated with eliciting a balanced immune response, 

directing production of both humoral and cellular immunity. 

1.4.1 Plasmid DNA as next generation vaccines 

Plasmids DNA vaccines consist of a circular piece of DNA that encodes for 

antigenic protein(s).  Upon administration to a host, plasmid DNA interacts with normal 

cellular functions to undergo transcription and translation, leading to the production of 

antigenic protein.  During plasmid DNA entry into the nucleus PRRs, namely TLR9 and 

absent in melanoma 2 (AIM2), detect the nucleic acid and initiate immune responses (9, 

10).  While initial clinical trials using plasmid DNA vaccines failed to initiate strong 

immune responses, recent preclinical research has identified strategies to enhance their 
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immunogenicity.  These strategies include co-delivery of a plasmid with adjuvant 

molecules (11, 12), encoding adjuvant proteins along with the antigenic protein (13), 

more effective delivery strategies (using nanoparticles or electroporation), and co-

delivery with RNA interference molecules (14, 15).  While DNA vaccines are not used in 

clinical practice, several clinical trials are ongoing.  They are also used in veterinary 

vaccination (16, 17).  

1.4.2 IVT mRNA as next generation vaccines 

Synthetic messenger RNA (mRNA) produced by in vitro transcription (IVT 

mRNA) has more recently gained interest as a vaccine platform.  PRRs detect IVT 

mRNA and initiate immune responses.  IVT mRNA’s utility as a vaccine has been 

demonstrated in preclinical settings for cancer immunotherapy (18), allergy prevention 

(19), and infectious disease vaccines (20).  It is now in clinical trials as a vaccine for 

several types of cancers including prostate (21) melanoma (22) and renal cell carcinoma 

(23). 

There are some important distinctions between plasmid DNA and IVT mRNA that 

merit discussion:  The more transient nature of IVT mRNA likely offers improved control 

over protein expression kinetics and nucleic acid dosing.  For some cell types, 

particularly non-dividing cells, IVT mRNA leads to more effective protein production (24, 

25) as plasmid DNA often relies on cell division to enter the nucleus and IVT mRNA only 

needs to enter the cytoplasm (26). IVT mRNA is touted as being more immunogenic 

than plasmid DNA.  While this claim has not been tested, the field is hopeful that IVT 

mRNA’s immunogenicity will translate to improved performance in clinical trials.  
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1.5 Multifunctionality of IVT mRNA 

IVT mRNA is a multifunctional molecule, enabling transgene protein production 

and stimulating the innate immune system.  It is important to recognize that PRR 

recognition affects transgene expression. Activation of antiviral PRRs initiate cellular 

protection mechanisms that inhibit protein production and degrade RNAs.  This section 

discusses the ability of IVT mRNA to drive transgene protein production and its 

interactions with innate immunity. 

1.5.1 Protein production by IVT mRNA  

Protein translation requires host factors to interact with mRNA, forming 

ribonucleoproteins (RNPs).  RNP formation not only regulate translation but also 

regulate localization and degradation of mRNAs.  Despite the importance of RNP 

formation for mRNA performance, our understanding regarding the quality and formation 

of RNPs with IVT mRNA is limited. This section compares the regulation of endogenous 

mRNAs with exogenously delivered IVT mRNA to highlight some of the challenges 

facing protein production by IVT mRNA.  

1.5.1.1 Transcription and translation of endogenous mRNAs 

Localization, half-life, and protein expression of endogenous mRNAs are tightly 

regulated. Regulation of endogenous mRNAs is dynamic and complex: at least several 

hundred different proteins are involved (27, 28).  Endogenous mRNAs are transcribed in 

the nucleus, where they concurrently bind to a variety of trans-acting factors. In the 

nucleus, there is evidence that mRNAs undergo a process termed mRNA imprinting. 

This process is believed to assist the cell in differentiating host mRNAs from foreign 

mRNAs.  The process of mRNA imprinting includes the addition of a 5’ cap, binding of 

the cap binding complex, the addition of a poly(A) tail, binding of a poly(A) binding 
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protein, splicing, and the binding of a variety of other trans-acting factors.  Many mRNAs 

undergo splicing, where introns are removed from the mRNA.  As introns are removed, 

exon junction complexes (EJCs) are deposited upstream of adjoined exon-exon 

junctions and serine and arginine-rich proteins bind to the mRNA. These factors, along 

with other cis and trans-acting factors ultimately direct a variety of regulatory processes 

(29-31).   

Once in the cytoplasm, mRNAs undergo a pioneering round of translation.  

During this time, the nuclear cap-binding complex supports ribosome binding to the 

mRNA.  The initiation factor eIF4e replaces the cap-binding complex as the mRNA 

enters steady state translation.  At this time, mRNA circularization facilitates ribosome 

recycling- ribosomes that recently terminated translation are near the start codon to 

begin with the translation of a new protein (32).  

1.5.1.2 Transcription and translation of exogenously delivered mRNAs 

One stark contrast between IVT and endogenous mRNAs is that endogenous 

mRNAs are almost entirely in RNPs, where IVT mRNA formulations typically are protein-

free.  IVT mRNA often enters the cell via the endolysosomal system (33, 34).  

Throughout its extracellular, endosomal, and cytosolic presence, IVT mRNA likely 

interacts with PRRs, inducing antiviral immune responses. To undergo translation, IVT 

mRNA needs to interact with translation initiation factors and ribosomes.   

1.5.1.3 Engineered untranslated regions for enhancing transgene protein 

production 

Engineering 5' and 3' UTRs (untranslated regions) into IVT mRNA is an easy 

strategy for exerting control over transgene expression.  UTRs in endogenous mRNAs 

interact with trans-factors to influence half-life and translation rates.  Most IVT mRNAs 
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described in the literature include 3’ UTRs from endogenous mRNAs that have long half-

lives such as those from the α-globin (35), albumin (36), or β-globin (37, 38).  Internal 

ribosome entry site (IRES) sequences are best known as elements in viruses, which 

function to recruit ribosomes and facilitate cap-independent translation.  Thess et al. 

show that a viral IRES sequence allows for cap-independent translation in IVT mRNA 

(36).  As exogenously delivered IVT mRNA likely encounter trans-acting factors in the 

same way that endogenously produced mRNA does, engineered UTRs will likely 

function differently in exogenously delivered mRNAs.   

1.5.2 Innate immune stimulation by IVT mRNA 

The immune stimulatory characteristics of IVT mRNA are often touted as an 

advantage in vaccination applications.  Innate immune stimulation drives the 

development of adaptive immune responses (39-41).  While many aspects of innate 

immune stimulation by IVT mRNA may be beneficial, certain aspects may be 

disadvantageous.  Innate immune responses to IVT mRNA inhibits transgene protein 

production and leads to cell death, potentially stymieing development of adaptive 

immune responses.  Thus, there needs to be a balance between innate immune 

stimulation and transgene protein production.   

Pollard et al. demonstrated how an overactive innate immune response could 

have deleterious effects. The group showed that an IVT mRNA vaccine for HIV could 

generate potent T cell immunity against the HIV gag protein.  However, they were 

curious regarding the high interferon responses initiated following IVT mRNA injection.  

To explore this, they vaccinated either interferon alpha receptor-deficient or wild type 

mice with their vaccine and showed that mice interferon alpha receptor had significantly 

increased gag-specific T cell responses (42).  This finding clearly demonstrates that 

certain aspects of IVT mRNA’s adjuvant effect can be disadvantageous for vaccination.    
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Figure 1.1. IVT mRNA interaction with PRRs. IVT mRNA may interact with PRRs in 
the extracellular space (TLR3) or in the endosomal system (TLR3, TLR7, or TLR8).  
Once escaped, cytosolic IVT mRNA is available for interaction with additional PRRs, 
including RIG-I, MDA-5, LGP-2, PKR, and OAS-L. Activation of the OAS pathway and 
PKR lead to degradation of RNA and inhibition of protein production, possibly causing 
cell death.  Activation of other PRRs leads to generation of type I interferon as well as 
inflammatory cytokines.  This triggers a positive feedback loop where PRR expression is 
upregulated.   
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Table 1.1 lists PRRs that potentially interact with IVT mRNA.  Figure 1.1 

describes how IVT mRNA’s entry into the cell influences interactions with PRRs.  Most 

commonly, IVT mRNA enters the cell via the endolysosomal system (34).  Here, it can 

interact with TLR3 (43), TLR7 (44), or TLR8 (37) in the endolysosomal compartment.  If 

IVT mRNA escapes into the cytoplasm, it may then activate OAS-L, PKR, and/or RIGI-I 

(45).  Activation of these PRRs leads to upregulation of type I interferon and NF-κB 

related genes.  As a result, the dsRNA-dependent protein kinase (PKR) and 2'-5'-

Oligoadenylate Synthetase-Like (OAS-L), along with other PRR genes, are upregulated 

(35). Both PKR and OAS-L recognize unmodified IVT mRNA (46, 47).  Thus, a positive 

feedback loop is generated for further response to IVT mRNA transfection (48). 

PKR and OAS-L pathways are likely the most detrimental antiviral pathways to 

IVT mRNA delivery, as they both inhibit protein expression (of endogenous mRNA and 

IVT mRNA). When PKR is activated, it phosphorylates the initiation factor eIF2α, 

arresting initiation of protein translation, both from delivered and host mRNA.  OAS-L 

response to IVT mRNA by activating the latent RNAs-L, which degrades ribosomal RNA 

and mRNA-- reducing transgene protein expression, cell proliferation, and potentially 

causing cell death (49).   

Activation of some of these PRRs is centrally important in the efficacy of different 

vaccines (19, 50-52).  For example, Mleczek et al. showed that when an anti-cancer IVT 

mRNA vaccine was complexed to protamine, TLR7 activation was enhanced, which also 

corresponded with tumor regression (44).  The ability to reduce certain PRR activation 

(such as PKR and OAS-L) while potentially enhancing activation of other PRRs (such as 

TLRs and RLRs) could prove beneficial for IVT mRNA vaccines. 

It may be surprising how antiviral receptors recognize IVT mRNAs but not 

endogenous mRNAs.  Both the abnormal extracellular and endosomal location of IVT 

mRNA facilitates its detection by PRRs.  However, IVT mRNA is also recognized by 



www.manaraa.com

11 
 

cytoplasmic PRRs such as RIG-I and PKR.  These PRRs recognize signatures of viral 

nucleic acids such as double stranded-RNA and 5’ triphosphates.  It is possible that 

PRRs detect secondary structure in IVT mRNAs.  Secondary structure formation in 

endogenous RNAs may be hampered by RNP formation.  

 
 

Table 1.1. PRRs known or suspected to respond to exogenous mRNA delivery 
PRR  Ligand   Commentary Key 

References 

PKR* Uncapped mRNA, RNA with 
complex secondary structure 
such as a pseudoknot 

Phosphorylation of EIF-2α 
(inhibition of translation) 

(46, 53, 54) 

OAS-L* dsRNA Leads to activation of RNase-L, 
mRNA and rRNA degradation, 
possibly apoptosis, and 
activation of RIG-I 

(47, 49, 55, 
56) 

MDA-5  Long dsRNA  Interferon, inflammatory cytokine 
production 
 
Consistently expressed across 
cell types (57, 58) 
 

(59) 

RIGI-I* 5' triphosphate with dsRNA; 
complex secondary structure 
in RNA; RNase-L digestion 
products 

(37, 60-62) 

LGP2 dsRNA Assists and modulates MDA-5 
interaction with RNA 

(63) 

TLR3*  dsRNA  Active in the 
plasma membrane 
and endosomes 

Expressed 
differential
ly across 
cell types 

(37, 43, 64) 

mTLR7
*/ 
hTLR8* 

ssRNA (GU rich RNA)  Active in 
endosomes 

(37, 65-67) 

hTLR7*  Possibly ssRNA (G rich 
ssRNA)  

(37, 57, 67, 
68) 

*exogenously delivered IVT mRNA has been experimentally demonstrated to activate or 
interact with the receptor. 
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1.6 Strategies to modulate IVT mRNA's interaction with innate 

immunity 

There are several strategies to alter protein production and innate immune 

activation by IVT mRNA.  Figure 1.2 shows a diagram of IVT mRNA and outlines the 

various regions available for modulating its properties.  

 
 

 
Figure 1.2. Diagram of IVT mRNA and opportunities for engineering its function.  
IVT mRNA consists of a 5' cap, 5' untranslated region, open reading frame, 3' 
untranslated region, and a poly(A) tail.  Each of these areas can be engineered to affect 
IVT mRNA regulation and function.   
 
 
 

1.6.1 Substitution of modified bases  

One way to modulate IVT mRNA interaction with innate immunity is by 

substituting modified bases into the mRNA strand for their unmodified counterpart.  

Endogenous and viral RNAs are modified in over a hundred different ways (such as by 

addition of a methyl or thiol group to nucleobases) (69).  These modifications can 

influence RNA secondary structure (70-73), regulate gene expression (74-77), and 
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influence RNA detection by PRRs (78-80).  Thus, the inclusion of modified bases in IVT 

mRNA has also been explored.  IVT mRNAs have been investigated that contain a 

variety of modified bases: 5-methylcytosine (35, 37), 2-thiouridine (37, 81), 5-

methyluridine (46),  6-methyladenosine (45, 46), and most notably, pseudouridine (45-

47, 82). Each modified base has been shown to impact IVT mRNA performance in a 

different way. Pioneering work by Kariko identified that that substitution of uridine with 

pseudouridine diminishes PKR activation (46), reduce RNase-L activity (47), and 

ultimately produce enhanced levels of protein (45, 46). Further work has shown that 

incorporation of pseudouridine and 5-methylcytosine, an analog of cytosine, further 

increases protein production (35).  However, IVT mRNA transgene protein production 

doesn't always seem to increase upon substitution of these modified bases; benefits 

associated with incorporation of modified bases are likely gene- and sequence-specific, 

as shown in (36). 

While pseudouridine can markedly increase transgene protein, it also influences 

IVT mRNA in ways that may be disadvantageous.  Pseudouridine presence in the stop 

codon allows non-canonical base pairing and suppression of translation termination (83-

85).  As synthesis of IVT mRNA, to date, includes incubation of a DNA template, RNA 

polymerase, and the ribonucleotides of interest in a single reaction, there is no current 

method to control pseudouridine location in the IVT mRNA strand, and it is always 

included in the stop codon.  The inclusion of modified bases in IVT mRNA has also been 

shown to reduce the functionality of UTR sequences (36).  

1.6.2 Codon optimization  

Degeneracy of the genetic code allows multiple gene sequences to encode for 

the same protein.  Codon choice is an important determinant in transgene expression 

and has been studied extensively for decades.  In some cases, codon usage is so 
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powerful that optimization in DNA plasmids improved protein yield over 1,000 fold (86).  

Codon choice influences protein expression in a variety of ways, including mRNA export 

from the nucleus, rate of mRNA translation, the error rate in the protein sequence, 

mRNA half-life (87), and even protein folding and function (88-90).  Most commonly, 

algorithms for codon optimization focus on matching the codon usage bias of a species 

and avoiding regulatory sequences in the mRNA (91, 92).  Algorithms are also used to 

reduce mRNA secondary structure (93-95) and enhance GC content.   

A few studies researched how codon optimization specifically affects IVT mRNA, 

opposed to plasmid DNA.  Kariko et al. used a codon-optimized sequence for IVT mRNA 

encoding the hormone erythropoietin, and showed that it performed better than the wild 

type sequence.  Interestingly, the benefit of codon optimization only held true when 

pseudouridine was substituted for uridine in the transcript; when unmodified bases were 

used, codon optimization did not enhance protein production (82).  Another study 

showed that GC enrichment of an IVT mRNA sequence encoding for either luciferase or 

erythropoietin could produce markedly increased levels of protein. This study also 

explored how incorporation of pseudouridine influenced transgene expression.  

However, the authors found a reverse trend from Kariko's paper: for both luciferase and 

erythropoietin encoding mRNA, pseudouridine substitution enhanced protein production 

in the non-optimized sequences, but reduced protein production in the codon optimized 

sequences (36).  These disparate influence pseudouridine incorporation and codon 

optimization has on IVT mRNA sequences, suggests there remains much more to learn 

regarding how codon optimization and pseudouridine substitution influence expression 

of exogenously delivered mRNA.   
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1.6.3 Delivery strategies 

Choosing an appropriate delivery strategy for IVT mRNA involves several 

considerations.  The route (intradermal, subcutaneous, etc), mechanism 

(electroporation, injection, gene gun, etc), and formulation (lipid nanoparticle, polymer 

nanoparticle, etc) may all significantly affect IVT mRNA's performance.  Many strategies 

for delivery of plasmid DNA or siRNA are applicable to IVT mRNA.  

Surprisingly, naked IVT mRNA injected in vivo leads to noticeable transgene 

protein expression (96).  However, the use of a delivery vehicle may improve protein 

levels and affect other characteristics of IVT mRNA.  Several studies show that delivery 

vehicles can enhance transgene protein production in vitro (74, 97-99) and in vivo (26, 

36, 97, 99-101).  Efforts to design delivery vehicles focus on facilitating mRNA uptake 

(through receptor-mediated endocytosis or the use of a cationic particle) and endosomal 

escape (through the incorporation of pH-sensitive elements, (101), altering mRNA 

interaction with PRRs (through complexation of mRNA with protamine) (44, 102), and 

conferring protection from nucleases (26, 100).  Figure 1.3 describes these strategies. 

Table 1.2 provides a list of relevant studies that use these strategies.   
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Figure 1.3. Strategies for effective delivery of IVT mRNA. Delivery vehicle may 
enhance in vivo circulation and distribution of mRNA, target certain cellular receptors for 
selective uptake, allow for endosomal disruption and IVT mRNA escape, and facilitate 
IVT mRNA release from the particle.   
 
 

1.6.3.1 Differences in delivery strategies between IVT mRNA, siRNA, and plasmid 

DNA 

Many concepts surrounding delivery of siRNA and plasmid DNA also apply to 

IVT mRNA; however, there are distinct differences that should be considered. Where 

IVT mRNA applications aim to introduce exogenous proteins into a host, siRNA 

applications aim to reduce endogenous proteins levels.  This key difference may greatly 

affect delivery parameters.  For siRNA to be most effective, applications may require its 

introduction into as many cells as possible.  Further, a controlled, steady release of 

siRNA into the cytoplasm of cells may be required.  For IVT mRNA, achieving 

transfection in a wide variety of cells may not be as crucial, especially if the protein is 

secreted extracellularly and then dispersed throughout the body.  Instead, the goal of 

IVT mRNA delivery may be the generation of high levels of transgene protein in an 

appropriate area of the body.  Also, while siRNA stimulates the immune system through 
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TLR7 recognition (103), the concern of immunostimulation by IVT mRNA may be greater 

as it is recognized by a more diverse array of PRRs (104). 

Although the clinical applications of IVT mRNA overlap more with plasmid DNA 

compared to siRNA, there are still key differences in the design requirements for delivery 

of each nucleic acid.  Plasmid DNA needs to enter the nucleus to be functional and thus 

targeted delivery to mitotic cells is important.  IVT mRNA; however, does not have this 

limitation, as it is functional in the cytoplasm. Targeted delivery of IVT mRNA to the 

cytoplasm of potentially any cell type is more important. In addition, plasmid DNA is 

immensely less susceptible to nuclease degradation and thus more stable than IVT 

mRNA.  Thus, nuclease protection may be more important for IVT mRNA than for 

plasmid DNA.  As the lifetime of IVT mRNA is more transient than that of plasmid DNA, 

delivery vehicles may also aim to impart quicker uptake of IVT mRNA. 

1.6.3.2 Influence of delivery strategy on innate immune stimulation 

 Delivery vehicles have the power to affect IVT mRNA interaction with PRRs.  For 

example, complexing IVT mRNA to protamine leads to heightened TLR7-dependent 

immune responses compared to naked IVT mRNA delivery (105).  This has also been 

observed with siRNA: Nguyen et al. screened a library of lipid-like materials for delivery 

of siRNA with enhanced immune-stimulatory properties.  The authors show that lipid 

nanoparticle characteristics could have a dramatic effect on siRNA’s stimulation of the 

immune system.  The effects were shown to be both TLR7 independent and dependent 

(106). In both cases, it is unclear if delivery vehicles enhance immune responses by 

improving IVT mRNA’s cellular uptake, enhancing its endosomal retention, affecting its 

recognition by PRRs, or simply by leading to a more inflammatory environment.  
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Table 1.2. Delivery vehicles tested for IVT mRNA 
Vehicle Composition Injection 

Route  
Application/Comments Reference 

Lipoplex formulation 
consisting of the cationic 
lipids MLRI, TransFast and 
DOTMA 

Intra-
ventricular 

Conferred protection of  
mRNA from RNases 

(100) 

Positively charged triblock 
polymer (DMAEMA, 
PEGMA, DEAEMA, and 
BMA) 

studied in 
vitro 

pH responsive segment for 
endosomal release, cationic 
segment for mRNA 
complexation, and a 
hydrophilic segment for in 
vivo stability 

(107) 

Poly(β-amino ester) core 
enveloped by a 
phospholipid bilayer 

intranasal pH responsiveness of 
poly(β-amino ester) allowed 
for endosomal disruption 

(101) 

mRNA-protamine 
associated with cationic 
liposome 

intravenous Conferred protection of 
mRNA from RNases and, 
prolonged circulation time, 
enhanced uptake by 
cancerous cells 

(26) 

mRNA-protamine 
complexed with poly(ε-
caprolactone)  

studied in 
vitro 

pH responsiveness 
facilitates endosomal 
release 

(74) 

Ionizable cationic 
lipid/phosphatidylcholine/ch
olesterol/ polyethylene 
glycol (PEG) lipid  

Intravenous pH responsiveness 
facilitates endosomal 
release 

(36) 

(PEG)-polyamino acid block 
copolymer, polyplex 
nanomicelle 

intrathecal 
injection  

pH responsiveness 
facilitates endosomal 
release; PEG facilitates 
enhanced stability 

(108) 

Mannosylated and 
histidylated lipopolyplexes  

intravenous Mannose on nanoparticles 
enhanced dendritic cell 
uptake of mRNA 

(109) 

Protamine  intradermal Conferred protection of 
mRNA from RNases, 
enhanced detection of 
mRNA by TLR7 

(22, 44, 
105) 

Polyacridine-PEG-peptide hydrodynam
ic tail vein 
injection 

Peptide binds mRNA; 
poymers confer in vivo 
stability 

(110) 
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Injection of IVT mRNA is currently under clinical evaluation for anti-cancer 

immunotherapy treatments.  Clinical trials are ongoing using RNActive technology, 

where a portion of IVT mRNA is complexed to protamine (21, 22).  Here, protamine 

complexation enhances IVT mRNA recognition by the PRR TLR7.  Other clinical trials 

have tested IVT mRNA delivered in a free form, supplemented with granulocyte-

macrophage colony stimulating factor as an adjuvant (111).  It is notable that these 

studied employed efforts to enhance stimulation of innate immunity.   The self-adjuvant 

properties of IVT mRNA may not be substantial enough to drive immunological 

protection.   

The delivery route of IVT mRNA is another important factor to consider for both 

therapeutic and vaccination purposes.  The use of IVT mRNA as a vaccination platform 

has predominated been studied by injection of IVT mRNA intradermally.  While the exact 

rationale for why this route is so heavily explored is uncertain, this may be because 

intradermal injection exposes IVT mRNA to more TLR7+ cells, allowing for enhanced 

stimulation of innate immune responses compared to other routes (112).  Intranodal 

delivery for cancer applications has also been a focus of recent work.  A study by Kreiter 

et al. explored how delivery route affected performance of an anti-cancer IVT mRNA 

vaccine.  The authors compared subcutaneous, intradermal, near nodal, and intranodal 

injection routes, and found that intranodal delivery led to both the greatest amount of 

detectable protein expression as well as heightened T cell responses (113). 

1.6.3.3 Challenges associated with delivery vehicle design  

A significant hurdle for the development of delivery vehicles is the variability 

between in vitro and in vivo results.  A study by Phua et al. illustrates these 

inconsistencies. Here, IVT mRNA nanoparticles transfected cells in vitro, but were 

ineffective upon subcutaneous administration to mice. Conversely, transfection was 
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unsuccessful when naked IVT mRNA was delivered to cells in vitro, but successful when 

delivered to mice subcutaneously. The study also showed that upon intranasal and 

intravenous delivery, naked IVT mRNA produced less protein than nanoparticle-

mediated delivery (97).  Others have also identified these inconsistencies and have 

shown that while cationic nanoparticles function well in vitro, they are less effective in 

vivo (114, 115). Interaction of nanoparticles with the extracellular matrix in vivo could 

explain this discrepancy.  Cationic delivery vehicles may interact with negatively charged 

serum proteins or negatively charges within the extracellular matrix.  Further, the 

extracellular matrix may also limit the diffusion of larger particles, inhibiting interaction 

with their cellular targets (116).  Thus, delivery vehicles intended for in vivo use require 

either optimization and testing in vivo or the use of in vitro systems that appropriately 

mimic the specific route delivery.  

1.7 Conclusion 

IVT mRNA is a potential platform that addresses many of the current challenges 

in vaccine development.  Similar to plasmid DNA, IVT mRNA does not require extensive 

culture of pathogens, addresses antigen hypervariability, generate cellular immunity, and 

undergoes rapid development.  IVT mRNA stands out from other nucleic acid vaccines, 

as it could potentially lead to enhanced antigenic protein production and has unique 

immune stimulation characteristics.  Moreover, a variety of strategies can modulate IVT 

mRNA characteristics. 

These strategies include the incorporation of modified nucleotides, codon 

optimization, incorporation of untranslated regions, and engineered delivery systems.  

Previous works on these strategies have relied on overall levels of transgene protein 

expression and cytokine responses to assess performance.  However, this metric leaves 

many cellular mechanisms of action unanswered.  Further, the literature suggests that 
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the efficacies of these strategies have significant gene-to-gene variation.  While IVT 

mRNA possesses many qualities that make it an appealing platform for next generation 

vaccines, a better understanding of its interaction with cellular machinery is likely 

required before it can become a platform technology.  

1.8 Thesis outline 

 The goal of this thesis is to investigate the innate immune responses to IVT 

mRNA and to explore strategies to modulate these immune responses.  Chapter 2 

focuses on the cytokine responses developed in response to IVT mRNA delivery 

transfection by bone marrow-derived dendritic cells and compares these responses to 

those elicited by plasmid DNA transfection.  Chapter 3 investigates the innate immune 

responses developed following vaccination with IVT mRNA intramuscularly, and how 

nanoparticle-mediated delivery can affect these immune responses. Chapter 4 creates 

and describes a strategy for controlling the innate immune responses to IVT mRNA by 

conjugation of adjuvants to the IVT mRNA.  Chapter 5 discusses the conclusions made 

by this thesis work and discusses future recommendations for related research. 
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CHAPTER 2 

RESPONSES OF BONE MARROW DERIVED DENDRITIC CELLS 

TO TRANSFECTION WITH PLASMID DNA AND IVT MRNA 

2.1 Introduction 
 Non-viral nucleic acid-based vaccines, namely plasmid DNA and IVT mRNA, are 

appealing alternatives to traditional platforms for vaccine development.  Traditional 

platforms include the use of killed or attenuated pathogens, where development can be 

time-consuming.  Nucleic acids based vaccines; however, are produced rapidly and 

safely.  Performance of plasmid DNA and IVT mRNA is dependent on their generation of 

antigenic protein as well as their activation of innate immunity.   

Plasmid DNA has been heavily explored for a variety of vaccine applications 

(117, 118).  However, early clinical trials using plasmid DNA have found that it yields a 

generally weak adaptive immune response against the encoded protein (119).  IVT 

mRNA has more recently received attention for vaccine research.  IVT mRNA boasts 

several potential advantages over plasmid DNA for vaccine applications. First, IVT 

mRNA has reportedly higher transfection efficiencies compared to plasmid DNA (120, 

121).  Second, where the antigenic protein may be toxic or dangerous, IVT mRNA 

transfection results in more transient protein production compared to plasmid DNA 

transfection.  Protein production resulting from plasmid DNA transfection may persist 

over several months (122, 123).  Lastly, IVT mRNA is supposed to elicit stronger innate 

immune responses upon transfection than plasmid DNA; however, there are limited 

studies providing direct comparisons of the two.  
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Innate immune responses elicited upon IVT mRNA transfection can be modified 

by substitution of bases with naturally occurring modified bases.  These modifications 

are known to influence a variety of characteristics of RNA, including secondary structure 

(70-73), gene expression (74-77), and detection by PRRs (78-80).  Warren et al. showed 

that two key modified bases 5methylcytosine (5mC) and pseudouridine (Ψ) could 

enhance protein production of green fluorescent protein IVT mRNA dramatically.  

Further, transfection with IVT mRNA bearing these modifications (5mC/Ψ IVT mRNA) 

led to reduced cytokine responses compared to unmodified IVT mRNA (35).   

This study examines the immunostimulatory properties of IVT mRNA containing 

both modified and unmodified nucleobases in relationship to plasmid DNA.  The 

objective of this study is to elucidate the differences between IVT mRNA, 5mC/Ψ IVT 

mRNA, and plasmid DNA.  A potential vaccine application of nucleic acids is for 

prophylactic allergy prevention (124, 125).  Therefore, nucleic acid vaccines were 

prepared for two model allergens - peanut allergen (Ara h 2) and egg allergen (ova) to 

study the use of these nucleic acids in this context.   

2.2 Materials and Methods 

2.2.1 Preparation of IVT mRNA 

 IVT mRNA was prepared according to the DNA templates provided in the 

Appendix. For ovalbumin, the DNA template was prepared from the PCL-neo-cOVA 

plasmid from Addgene (Plasmid #25097).  The DNA sequence for the peanut allergen 

Ara h 2 was generated by GeneArt based on the Arah2.01 protein sequence 

(Accession# AAK96887), optimizing for GC content and murine expression.  Prior to 

transcription, DNA template were amplified using the Q5 high-fidelity DNA polymerase 

(New England Biolabs).  The PCR product was purified, digested with the restriction 
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enzyme NOTI to create a 5' overhang, and then re-purified.  The QIAquick PCR 

purification spin column (QIAGEN) was for all purifications of the linear DNA template.  

The T7 mScript Standard mRNA Production System was used to generate IVT mRNA 

(Cellscript), enzymatically add a Cap-1 structure, and enzymatically add a poly(A) tail.  

The manufacturer's instructions were followed, however. the RNeasy mini kit (QIAGEN) 

was used to purify IVT mRNA when necessary.  To incorporate modified bases, 

ribonucleotide cocktails were prepared to consist of 25 mM of each base.  

pseudouridine-5'-Triphosphate (ψ) and 5-methylcytidine-5'-triphosphate (5mC) were 

purchased from TriLink Biotechnologies; adenosine triphosphate and guanosine 

triphosphate were purchased from USB.  Following, IVT mRNA was treated with 

Antarctic phosphatase (New England Biolabs) for 30 min to remove residual 5′-

triphosphates, and then cleaned up and quantified using the Nanodrop 2000 (Thermo 

Scientific). RNA integrity was verified by denaturing gel electrophoresis. 

2.2.2 Plasmid DNA constructs 

For ovalbumin, the plasmid PCL-neo-cOVA was used (Addgene Plasmid #25097), 

which contained the sequence for cytoplasmic ovalbumin under the control of the 

cytomegalovirus (CMV) promoter.  For Ara h 2, GeneArt gene synthesis (Thermo Fisher) 

was used to custom design a DNA template that was codon optimized for expression in 

mouse cells.  This template, as well as the template for G39C were cloned into the 

plasmid eGFP-C1 under the control of the CMV promoter using the restriction digest 

sites NheI and XbaI (blunt end ligation).  Plasmids were amplified in E. coli (DH5α), and 

isolated using an endotoxin-free maxiprep kit (QIAGEN).   

http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=2680
http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=2675
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2.2.3 Cell line culture and IVT mRNA transfection 

 The human embryonic kidney cell line 293T was maintained in High Glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Lonza) with 10% FBS (Hyclone) and 100 

U/ml penicillin and streptomycin (Invitrogen). Approximately 60,000 cells were seeded in 

a 24 well plate the evening prior to stimulation. Cells were transfected with the indicated 

treatment using Lipofectamine 2000 (Invitrogen) or the Mirus transfection reagent as 

indicated, according to each manufacturer’s instructions.  NIH 3T3 cells were cultured in 

DMEM supplemented with 10% bovine calf serum and 100U/ml penicillin and 

streptomycin.   

2.2.4 Bone marrow derived dendritic cell culture and transfection  

Bone marrow was collected from 6-8 week old BALB/c mice and homogenized by 

agitation with the rubber plunger of a 1 ml syringe.  Red blood cells were lysed with red 

blood cell lysis buffer (eBioscience), washed with PBS in 2% FBS, sequentially passed 

through 100 µm and 70 µm cell strainers, and then cultured for six days in DMEM in the 

presence of 4 ng/ml interleukin 4 (IL-4) (Sigma) and 20 ng/ml Granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Peprotech) at 106 cells/ml.  Every two days, half of 

the cell culture media was replaced with fresh media containing IL-4 and GM-CSF.  On 

day six, cells in suspension were plated in 24 well plates (106 cells in 1 ml/ well) and 

transfected in triplicate using Lipofectamine 2000 with 0.5 μg of nucleic acid. 

2.2.5 Hek Blue TLR7 cell culture and assay for TLR7 activation 

Hek Blue TLR7 and wild type (TLR7 negative) cells were purchased from Invivogen. The 

cells were engineered to contain a gene for secreted embryonic alkaline phosphatase 

(SEAP) under control of the nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-КB) promoter.  Cells were cultured in DMEM with 10% FBS and 100 U/ml 
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penicillin and streptomycin and 100 μg/ml Normocin (Invivogen).  Plasmid expression 

was maintained by culturing cells in blasticidin at 10mg/ml (for TLR7 expression) and 

Zeocin at 100mg/ml (for SEAP expression).  To assess SEAP production, cells were 

seeded in a 96 well plate (40,000 cells/well) in Hek Blue detection media (Invivogen).  

Cells were transfected with nucleic acid using Lipofectamine 2000 in Opti-MEM 

(Invitrogen).  Color absorbance was measured with a 96 well plate reader at 635 nm 6-

16 hours following transfection.   

2.2.6 Quantitative RT-PCR 

 Cells were transfected as mentioned in Section 2.2.4.  At the indicated time point, 

total RNA was collected with QIAGEN's RNeasy kit, which used an on-column DNAse 

treatment. RNA was quantified by absorbance at 260nm and converted to cDNA using 

the RT2 First Strand kit (SA Biosciences). qRT-PCR was performed using the 

StepOnePlus real-time PCR system (Applied Biosciences) using 15 ng of cDNA and 

SYBR green master mix (SA Biosciences), which was used according to manufacturer's 

directions. For measuring intracellular IVT mRNA levels, fold changes were calculated 

using the ddCT method on StepOne software in reference to GAPDH.  For gene 

expression studies, qPCR was conducted in technical triplicates using the FLUIDIGM 

Biomark system on a 48 by 48 chip.  Indicated PCR primer assays were designed by 

and purchased from FLUIDIGM.  Samples were used from four independent biological 

experiments.  QIAGEN’s online data analysis center was used for data analysis.  

Statistical significance was based on a Student’s t-test of the replicate 2-ΔCT values for 

each gene in the control group and treatment groups.  The reference genes ActB and 

RBP13a were used to normalize expression relative to untreated cells.  Sequences for 

gene-specific primers are listed in the Appendix.   

http://www.invivogen.com/normocin
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2.2.7 Secondary structure modeling of IVT mRNA using Mfold 

 The first 100 bases of IVT mRNA sequences were input into Mfold (126).  IVT 

mRNA was modeled as linear DNA polymer under approximately intracellular conditions 

(10mM NaCl, 1mM MgCl, 37C).   

2.2.8 Western blots 

 At the indicated time point following transfection, cell lysates were harvested with 

RIPA buffer containing a protease inhibitor cocktail (Roche) on ice. The protein content 

of lysates was determined using the bicinchoninic acid (BCA) assay (Pierce), and an 

equivalent quantity of cellular protein were run on NuPAGE Novex 4-20% tris-glycine 

gels (Thermo Fisher Scientific).  Protein was transferred to a polyvinylidene fluoride 

membrane overnight.  The membrane was washed in tris buffered saline with 0.1% triton 

X 100 (TBST), blocked with 5% BSA in TBST, stained with primary antibodies overnight 

at 4C, washed with TBST, stained with secondary antibodies (LI-COR) for 30 minutes at 

room temperature and then washed with TBST and PBS. Chicken anti-Ara h 2 antibody 

(a gift from Soheila Maleki, United States Department of Agriculture, New Orleans, USA) 

and rabbit anti-ovalbumin (Abcam) and mouse anti GAPDH (Abcam) were used as 

primary antibodies.  Anti-rabbit DyLight 680, anti-mouse DyLight 680, and anti-chicken 

DyLight 800 were used as secondary antibodies.  Blots were imaged using the LI-COR 

infrared imager.   

2.2.9 Flow cytometry 

 BMDCs were kept on ice throughout the flow cytometry staining procedure.  Cells 

were lifted from cell culture plates with cell dissociation buffer (Sigma), washed with 

PBS+2% FBS, stained for cell surface expression of CD80, CD86, CD11c, MHCII, or 

OX-40L, which were diluted 1:100 in PBS supplemented with calcium and magnesium 

https://en.wikipedia.org/wiki/Polyvinylidene_fluoride
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and 2% human serum.  Cells were then washed two times in PBS+2% FBS and then 

analyzed using the Accuri flow cytometer.  Data was analyzed using FlowJo after gating 

for viable single cell populations.  For each experiment, treatment response ratios were 

calculated by dividing the median staining fluorescence of the treatment group over the 

Lipofectamine 2000 only control.  Data was analyzed by a one-way ANOVA in JMP 

followed by a Dunnett's post-analysis test.   

2.2.10 Proximity ligation assay 

NIH 3T3 cells were electroporated with the pUNO1-mTLR7-HA3x plasmid 

(Invivogen) using the Neon electroporation system (Thermo Fisher Scientific) according 

to the manufacturer’s instructions and plated on glass coverslips in 24 well plates 

(approximately 40,000 cells/well).  Approximately 48 hours later, cells were transfected 

with 400ng of IVT mRNA using Lipofectamine 2000. After five hours, cells were fixed 

with 2% paraformaldehyde in PBS, permeabilized with PBS supplemented with 0.2% 

tween 20, and then blocked for 1 hour with a solution containing 0.5% Tween-20, 0.1% 

Triton X-100, 0.1% gelatin (Aurion), 2% donkey serum (VWR) and 1% bovine serum 

albumin (EMD) in PBS.  Samples were stained with the primary antibodies rabbit anti-

HA, (Abcam) and mouse anti IRAK4 (LSBio) diluted 1:500 in a solution of 0.25% gelatin, 

0.5% donkey serum, and 1% BSA in PBS. Proximity ligation assay was then performed 

in accordance with manufacturer’s instructions (Olink Bioscience). Following PLA, cells 

were imaged using an UltraVIEW spinning disk confocal microscope, Zeiss LSM 510 

Meta, a Hamamatsu Flash 4.0v2 CMOS camera and an 89000 Sedat Quad-ET filter set. 

A 40x, NA 1.3 Zeiss EC Plan-Neofluar oil objective was used for all tiled images and a 

63×, NA 1.4 Zeiss Plan-Apochromat oil objective was used for all other images. Imaging 

was controlled by Volocity acquisition software (PerkinElmer). Image stacks were 
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recorded at 350 nm intervals. The number of PLA signals per cell were counted using 

Volocity software.  

2.3 Results 

2.3.1 Ara h 2 IVT mRNA translation is dependent on 5' secondary 

structure  

 To assess IVT mRNA functionality, we first transfected human embryonic kidney 

293T cells.  Cell lysates were collected after 6, 12, or 24 hours, and analyzed by 

Western blot for presence of the Ara h 2 or ovalbumin protein. Initially, while ovalbumin 

protein was detected, Ara h 2 protein was not. To investigate this discrepancy, Ara h 2 

and ovalbumin IVT mRNA were transfected again, and qRT-PCR was performed on 

cellular RNA to determine if Ara h 2 IVT mRNA was found intracellularly in a comparably 

amount to ovalbumin IVT mRNA (Figure 2.1A).  Intracellular IVT mRNA levels were 

found to be comparable.   

Next, IVT mRNA secondary structure was examined at the 5' end to see if the 

secondary structure was possibly interfering with protein translation.  We hypothesized 

that reducing the secondary structure near the 5’ end would enhance translation, either 

by enhancing enzymatic capping of the IVT mRNA or by better allowing ribosome 

binding. The 39th base in the mRNA sequence for Ara h 2 was modified from a 

guanosine to a cytosine to reduce secondary structure, which maintained the protein 

sequence (Figure 2.1B). The modified mRNA strand was produced (OAH2 G39C) and 

293T cells were again transfected, using the modified and original construct (OAH2). 

Cell lysates were analyzed by Western blot for the Ara h 2 protein.  Figure 2.1C shows 

that this mutation enabled translation of the Ara h 2 protein. 
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Figure 2.1. A point mutation in Ara h 2 IVT mRNA enables transgene expression. 
A.) 293T cells were transfected with 0.25μg of either ovalbumin or Ara h2 encoding 
mRNA with the Mirus Trans-it kit. Intracellular presence of the transfected mRNA was 
analyzed over time with qRT-PCR (data representative of three experimental repeats). 
B.)  IVT mRNA secondary structure was modeled using the Mfold program. Modification 
of the 39th base from G to C altered the secondary structure without modifying the 
protein sequence. C.) This modification allows for detection of the Ara h 2 protein.  
 
 
 

2.3.2 Transfection of BMDCs with plasmid, IVT mRNA, and 5mC/Ψ 

IVT mRNA 

 We next wanted to assess if incorporation of 5methylcytosine and pseudouridine 

would also lead to increased protein expression for the IVT mRNAs used in this study.  

Bone marrow-derived dendritic cells (BMDCs) were used, as they are potent antigen 

presenting cells.  IVT mRNA and 5mc/ψ IVT mRNA were prepared to encode for either 

ovalbumin or Ara h 2.  IVT mRNAs or plasmid DNAs were transfected into BMDCs using 

Lipofectamine 2000. Sixteen hours later, cell lysates were collected and analyzed by 

Western blot for protein expression.  Interestingly, we see that 5mc/ψ IVT mRNA leads 

to increased protein expression for ovalbumin.  However, the reverse is true for Ara h 2 
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IVT mRNA.  We were not able to detect protein expression of the genes when they were 

delivered in plasmids (Figure 2.2). 

 
 

 
Figure 2.2 Transgene expression of mRNA, 5mC/Ψ mRNA, and plasmid DNA. Cell 
lysates were analyzed by Western blot 18 hours following transfection for presence of 
the genetically delivered protein.  
 
 

2.3.3 Transfection with plasmid DNA, not IVT mRNA, leads to 

increased expression of dendritic cell maturation markers  

Dendritic cell maturation is an important event in the development of adaptive 

immune responses.  It is associated with enhanced antigen presentation, migration to 

the lymph nodes, and T cell priming. We wanted to determine if transfection with plasmid 

DNA, IVT mRNA, or 5mc/Ψ IVT mRNA were associated with BMDC maturation. BMDCs 

were again transfected with plasmid DNA or IVT mRNA encoding for either ovalbumin or 

Ara h 2. To isolate any effect that the peanut allergen protein may have on the cellular 

response, we also used the OAH2 sequence, which did not produce detectable Ara h 2 

protein as well the plasmid vector that held Ara h 2 with the open reading frame 
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removed.  Eighteen hours following transfection, cells were analyzed for expression of 

maturation markers as well as gene expression of antiviral and inflammatory cytokines. 

 BMDCs were transfected with 0.5 μg of mRNA, 5mc/Ψ mRNA, plasmid DNA, or 

a blank water control using Lipofectamine 2000.  Eighteen hours following transfection, 

cell surface expression of CD80, CD86, CD11c, and MHCII were analyzed by flow 

cytometry. Surface staining is shown in Figure 2.3 and is represented by the “treatment 

response ratio.” The treatment response ratio indicates the median fluorescence 

intensity for each transfection group divided by the median fluorescence intensity for the 

untreated control. Values plotted represent the average of 6 to 11 experiments. We see 

that plasmid DNA transfection led to increased cell surface expression of CD80, CD86, 

and MHCII; while IVT mRNA transfection did not. We do see that CD11c cell surface 

expression is reduced in response to transfection across all treatment groups, a 

response that is indicative of PRR activation (Figure 2.4).  
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Figure 2.3. Transfection of plasmid DNA, but not mRNA, upregulates BMDC 
maturation markers. BMDCs were transfected with IVT mRNA or plasmid DNA 
encoding the peanut allergen Ara h 2 or the egg allergen ovalbumin. Eighteen hours 
following transfection, cells were analyzed with flow cytometry for cell surface staining of 
CD80, CD86, and MHCII. Cell staining is represented as treatment response ratio, which 
is median cell staining intensity divided by the cell staining intensity of untreated 
controls. Plotted values represent an average of 6 to 11 experiments. Significance was 
tested by a one-way ANOVA followed by a Dunnett's test (p<0.05). 
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Figure 2.4. Transfection of plasmid DNA and IVT mRNA downregulate CD11c cell 
surface expression. BMDCs were transfected with the indicated nucleic acid encoding 
for Ara h 2 or ovalbumin.   Eighteen hours following transfection, cells were analyzed 
with flow cytometry for cell surface staining of CD11c. Cell staining is represented as 
treatment response ratio, which is median cell staining intensity divided by the cell 
staining intensity of untreated controls. Plotted values represent an average of 6 to 11 
experiments. Significance was tested by a one-way ANOVA followed by a Dunnett's test 
(p<0.05). 
 
 

2.3.4  IVT mRNA and plasmid DNA transfection do not lead to 

appreciable cell death  

 Next, we wanted to determine if mRNA or plasmid DNA transfection led to cell 

death or apoptosis. To test this, cells were transfected with mRNA or plasmid DNA as 

described earlier. Twenty-four hours following treatment, cells were stained for apoptosis 

using the Annexin-V-FITC apoptosis kit (Millipore). Cell staining for Annexin-V and 

propidium iodide were analyzed with flow cytometry, and the treatment response ratios 

are shown in Figure 2.5. Analysis of cells in early and late stages of apoptosis, indicated 

by Annexin only staining and Annexin and propidium iodide staining was also performed, 

but no significance was detected.  
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Figure 2.5. IVT mRNA and plasmid DNA transfection do not lead to appreciable 
cell death. BMDCs transfected with mRNA or plasmid DNA encoding either the peanut 
allergen Ara h 2 or the egg allergen ovalbumin. Twenty-four hours following transfection, 
cells were analyzed for apoptosis by staining with Annexin-V and propidium iodide.  
Difference between groups was tested with a one-way ANOVA followed by a Dunnett's 
test, n= 5. 
 
 

2.3.5 IVT mRNA transfection leads to upregulation of antiviral 

associated cytokines  

 Cellular antiviral defenses sense foreign nucleic acids to initiate a variety of 

protective innate immune responses, which both reduce protein expression and initiate 

development of adaptive immune responses. We conducted a qRT-PCR analysis to 

assay for gene expression in response to nucleic acid transfection.  We transfected 

Ova 
encoding 
nucleic acids 

Ara h 2  
encoding 
nucleic acids 
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BMDCs as described earlier and extracted RNA from the cells 18 hours later (Figure 

2.6). 

 It is clear that IVT mRNA transfection elicits strong antiviral responses, 

characterized by IFN-α and TNF-α upregulation, and that this response can be 

downregulated by substitution of modified bases. This trend occurs for both Ara h 2 and 

ovalbumin-encoding nucleic acids, suggesting that it is not responsible for the variation 

in transgene protein expression. In fact, we see that ovalbumin-encoding mRNA elicited 

an almost four-fold higher upregulation of IFN-α and TNF-α compared to Ara h 2 mRNA.  
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Figure 2.6. Expression of antiviral cytokines in response to nucleic acid 
transfection. BMDCs were transfected with the indicated nucleic acid, and then gene 
regulation was assessed.  n=4. ANOVA followed by Tukey's Post Analysis test (* 
indicates p<0.05) 
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2.3.6 TLR7 activation by IVT mRNA 

We hypothesized that incorporation of modified bases 5mC/Ψ may influence 

detection of IVT mRNA by the TLR7.  TLR7 detects endosomal single-stranded RNAs, 

and delivery of IVT mRNA by some have shown to activate TLR7 (127).  To test this 

hypothesis, we used Hek293t cells that were stably transfected with a plasmid encoding 

murine TLR7.  TLR7+ cells or wild-type TLR7- cells were transfected with indicated 

amounts of ovalbumin IVT mRNA using Lipofectamine 2000. Sixteen hours following 

transfection, NF-κB expression was assayed as assayed by measuring SEAP activity, 

which was genetically engineered under the control of NF-κB (Figure 2.7).  SEAP activity 

is plotted relative to SEAP activity from the untreated control cells.  The small molecule 

imiquimod is used as a positive control for TLR7 activation.  There are no significant 

differences between TLR7 positive and negative cells.  Interestingly, we see increased 

SEAP activity for 5mC/Ψ IVT mRNA compared to unmodified mRNA.  
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Figure 2.7 NF-КB responses by TLR7-positive and TLR7-negative cells in response 
to transfection with IVT mRNA.  Cells were transfected with indicated amounts of IVT 
mRNA using Lipofectamine 2000.  Sixteen hours later, NF-КB activation was assayed by 
measuring SEAP production.  The TLR7 agonist imiquimod was used as a positive 
control.   
 
 
The results found in Figure 2.7 were surprising, as there is significant literature showing 

that delivery of ssRNA composed of unmodified bases should activate TLR7 (128-130), 

where our experiment showed that NF-КB upregulation was not TLR7 dependent.  We 

hypothesized that perhaps while TLR7 is activated, other antiviral responses are 

shielding its detection via NF-КB mediated protein responses.  Upon activation, TLR7 
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forms a complex with IRAK4 and other proteins to initiate signaling.  To further 

investigate if IVT mRNA activates TLR7, a proximity ligation assay was designed to 

assay for TLR7 activation.  NIH3T3 cells were electroporated with a plasmid encoding 

for the TLR7 gene with a human influenza hemagglutinin (HA) tag.  Forty-eight hours 

later, cells were transfected with ovalbumin IVT mRNA.  Five hours after transfection, a 

proximity ligation assay was performed to detect complex formation of TLR7 and IRAK4, 

which resulted in fluorescent puncta.  The number of PLA puncta were imaged using 

fluorescent microscopy and counted per cell.  Figure 2.8 indicates the number of PLA 

signals per cell.  Cells transfected with IVT mRNA composed of unmodified bases 

showed increased TLR7 activation compared to 5mC/Ψ IVT mRNA.  

 
 

 
Figure 2.8 TLR7 signaling complex formation in response to IVT mRNA.  A 
proximity ligation assay between TLR7 tagged HA and IRAK4 was performed to detect 
TLR7 activation.  NIH3T3 cells were transfected with a plasmid that encoded a TLR7- 
influenza hemagglutinin fusion protein.  A proximity ligation assay was performed to 
detect interaction between HA and IRAK4.  The number of PLA signals were counted 
per cell.  * indicates p<0.05, Mann-Whitney test. 
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2.4 Conclusion 

In this study, we compared the innate immune responses to transfection with 

plasmid DNA, IVT mRNA, and 5mc/Ψ IVT mRNA.  We identified that inclusion of 

modified bases in IVT mRNA leads to disparate effects on protein expression for 

different gene constructs- where ovalbumin IVT mRNA produced more protein with 

modified bases were included, Ara h 2 IVT mRNA produced more protein when all 

unmodified bases were used.  This study also found that transfection with plasmid DNA 

lead to indicators of BMDC maturation (MHCII, CD80, and CD86 cell surface 

expression) while transfection with IVT mRNA and 5mc/Ψ IVT mRNA did not.   

In accordance with previous literature, this we found that transfection with IVT 

mRNA upregulated the antiviral cytokines interferon-α and tumor necrosis factor-α.  We 

also found that 5mC/Ψ substitution reduced this effect.  This effect was consistent for 

both ovalbumin and Ara h 2 IVT mRNA.  However, we also identified that 5mC/Ψ 

substitution upregulated: interleukin 18 and interleukin 12.  This may indicate that 5mc/Ψ 

IVT mRNA activates PRRs differently than unmodified IVT mRNA.   

 While substitution of modified bases in IVT mRNA has disparate effects on 

protein expression, differences between the two constructs were not identified in BMDC 

maturation, Annexin/propidium iodide or gene expression studies.  This suggests that 

there may be a physical reason why the two constructs may behave differently upon 

substitution of modified bases.  It would be interesting to see if the disparate protein 

expression would persist upon altering the codon usage in each construct.  We also 

found that while IVT mRNA transfection activated TLR7, incorporation of modified bases 

reduced this activation. 
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CHAPTER 3 

IN SITU ANALYSIS SHOWS NANOPARTICLE DELIVERY OF 

MRNA VACCINE AFFECTS INNATE IMMUNE RESPONSES 

 The work presented here contains excerpts from the publication: In situ analysis 

shows nanoparticle-mediated delivery of mRNA vaccine affects innate immune 

responses. Loomis, Bellamkonda RV Santangelo PJ et al.. Manuscript in preparation 

3.1 Introduction 

 Synthetically produced IVT mRNA is currently being pursued as a flexible 

platform technology that would allow for the safe, rapid, and potentially rational 

development of future vaccines.  IVT mRNA’s interaction with the innate immune system 

is a central factor in its performance as a vaccine vector.  Injection of IVT mRNA elicits 

strong innate immune responses, characterized by type I interferon and inflammatory 

cytokines, which are released in response to PRR activation (131, 132).  Upon 

recognition of IVT mRNA, PRRs initiate paracrine and autocrine signaling that prime a 

multitude of responses against pathogenic stimuli.  This signaling can lead to the up or 

down regulation of other PRRs and infiltration of immune cells to the injection site.  The 

quality, magnitude, and nature of innate immune responses are large factors in 

determining vaccine performance (40, 41, 133-135).  

Despite the importance of these early events, we have a limited understanding of 

how IVT mRNA interacts with the innate immune system and what opportunities exist to 

modulate the interaction.  While it is established that IVT mRNA elicits strong cytokine 

responses upon injection, the PRRs responsible are unclear.  Previous studies have 

shown that IVT mRNA has the capability to interact with retinoic acid-inducible gene 1 
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(RIG-I) (37, 45), protein kinase RNA-activated (PKR) (46), Toll-like receptor 7 (TLR7) 

(44, 127), Toll-like receptor 8 (TLR8) (37), and Toll-like receptor 3 (TLR3) (37).  TLR7 

detects endosomal single-stranded RNA (ssRNA), particularly ssRNAs that are 

guanosine and uridine-rich (65, 136).  RIG-I, along with Melanoma Differentiation-

Associated Protein 5 (MDA5) are both cytoplasmic anti-viral PRRs that detect double-

stranded RNAs (dsRNAs): RIG-I detects shorter dsRNA bearing 5' phosphates, an 

intermediate structure found during viral replication (137); MDA5 detects longer double-

stranded RNA, another structure found during viral replication. To the best of our 

knowledge, MDA-5 has not yet been studied as a receptor for IVT mRNA (138, 139).  

Previous work has relied on overexpression or knockout systems of target PRRs 

to study their activation.  However, both of these strategies hamper paracrine and 

autocrine signaling and, therefore, may hide the importance of certain PRRs while over-

crediting the contribution of others.  Further, many PRRs are heterogeneously 

expressed across cell types (64, 140).  Cell type choice used for in vitro experiments 

may significantly bias the assayed importance of a PRR using these methods.  

 To gain a more comprehensive understanding of the innate immune reactions to 

vaccination with IVT mRNA, we developed proximity ligation assays (PLAs) (141) to 

detect PRR activation.  Figure 3.1 provides a schematic illustrating the central concept of 

PLA.  PLAs detected the formation of essential protein complexes involved in PRR 

signaling pathways.  Upon activation, TLR7, RIG-I, and MDA5 each form protein 

complexes that initiate signaling cascades, and that can be detected using a PLA.  TLR7 

forms a protein complex termed the myddosome, which includes myeloid differentiation 

primary response gene 88 (MYD88), and interleukin-1 receptor-associated kinase 

proteins (IRAK1, IRAK2, IRAK3, and IRAK4) (142, 143). RIG-I and MDA5 each interact 

with interferon-beta promoter stimulator 1 (IPS-1), also known as MAVS, to form protein 

complexes that are referred to as signalosomes (144, 145). PLAs used in this study 
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detected the formation of these protein complexes histologically by assaying for the 

proximity of either TLR7 with IRAK4, RIG-I with IPS-1, or MDA5 with IPS-1. This 

methodology is advantageous, as it allows observation of PRR activation in situ without 

perturbation of the host’s antiviral responses. TLR7, RIG-I, and MDA5 signaling can all 

lead to upregulation of inflammatory and interferon cytokines through the activation of 

nuclear factor-κB (NF-κB) and interferon (IFN)-regulatory factors (IRFs) (138, 143).  

Strategies to modulate innate immune responses to IVT mRNA will likely be 

needed for vaccine development.  We examined how IVT mRNA delivery in a 

nanoparticle formulation with a cholesterol-derived lipid (cholk) affected innate immune 

responses.  We found that nanoparticle-mediated delivered altered PRR signaling, the 

infiltration of immune cells to the injection site, and the presence of the injected mRNA in 

the draining lymph nodes.  Additionally, IVT mRNA was fluorescently labeled prior to 

intramuscular (i.m.) injection.  This enabled histological visualization of mRNA 

distribution, its uptake by different cell types, and its presence in the lymph nodes over 

time. 
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Figure 3.1. Schematic illustrating mechanism of PLA. Primary antibodies detect the 
proteins of interest (top left panel).  Secondary antibodies bearing oligonucleotide 
sequences bind to primary antibodies, and then are ligated together (top right panel).  
Rolling circle amplification expands the ligated DNA sequence (lower left panel).  
Fluorescent molecules bind to the amplified sequence (lower right panel), allowing 
visualization of the proximity event with microscopy.  PLA settings used for this study 
detected proteins that were less than 40 nm apart.  
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3.2 Materials and Methods 

3.2.1 IVT mRNA and MTRIP labeling  

 IVT mRNA that coded for firefly luciferase was provided by CureVac GmbH 

(Tübingen, Germany). The mRNA had a 5’ cap, included the 3' untranslated region 

(UTR) from human albumin as well as a poly(A) tail. IVT mRNA was labeled with 

multiply-labeled tetravalent RNA imaging probes (MTRIPS) for detection by histology 

and flow cytometry. MTRIPs were synthesized in the Santangelo laboratory, and the 

procedure is described in full detail here (146). Briefly, 2'O-methyl RNA/DNA chimeras 

complementary to three different regions of the 3' UTR of the luciferase mRNA were 

purchased from Biosearch Technologies (Petaluma, CA). Each oligo contained a 5' 

biotin and multiple dT-C6-NH2 modifications. Free amine groups in the oligos were 

labeled with either Cy3B NHS ester (GE healthcare) or DyLight 680 NHS ester (Pierce) 

according to the manufacturers' protocols; unbound dye was removed by centrifugal 

filtration (3 kDa MWCO, Millipore). To assemble MTRIPS, each fluorescently labeled 

biotinylated oligo was incubated with Neutravidin at a 5:1 molar ratio for 1 hour at room 

temperature. Unbound oligos were removed by centrifugal filtration (30 kDa MWCO, 

Millipore). To bind label IVT mRNA with MTRIPS, IVT mRNA was first incubated at 70C 

for 10 minutes and then immediately placed on ice to remove secondary structure. IVT 

mRNA was then incubated with each MTRIP at a 1:1 molar ratio overnight at 37C. 

Unlabeled probes were removed by filtration (200 kDa MWCO, Advantec), and IVT 

mRNA was buffer exchanged into Ringer’s lactate (RiLa). IVT mRNA content was then 

determined by 260nm absorbance using the Nanodrop 2000 (Thermo Scientific). 
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3.2.2 Preparation and sizing of mRNA nanoparticles  

 Cholk was provided by In-Cell-Art (Nantes, France). To prepare nanoparticles, 

mRNA and cholk were individually diluted in RiLa to obtain final volumes of 20µl each 

(10 µg of mRNA, and a 1:10 charge ratio of mRNA:cholk). The cholk solution was then 

added to the mRNA, mixed well, and allowed to incubate for 15 minutes prior to 

injection. Size and zeta potential of particles were measured with Malvern Instruments 

Zetasizer Nano ZS. Particles were diluted in either PBS to measure size or in deionized 

water to measure zeta potential.  

3.2.3 Mouse intramuscular injection and luciferase assay  

 Female BALB/c mice (Charles River, Wilmington, MA) were anesthetized with 

2.5% isoflurane and then injected in the anterior tibialis with 10µg (40µl) of IVT mRNA 

diluted in RiLa using a 29G needle. The alternate leg served as a sham injection control. 

Mice were housed and manipulated under specific-pathogen-free conditions in the 

animal care facilities of Georgia Institute of Technology. All experiments were in 

accordance with the Institutional Animal Care and Use Committee. For the luciferase 

assay, anterior tibialis muscle was removed and snap frozen in liquid nitrogen 16 hours 

following IVT mRNA injection. Tissue was homogenized according to (117) with a mortar 

and pestle cooled with liquid nitrogen, suspended in 0.5ml of passive lysis buffer 

(Promega), subjected to 4 freeze-thaw cycles (between liquid nitrogen and a 37C water 

bath), and centrifuged at 10,000 RCF for 3 minutes to remove debris. The process was 

then repeated with the debris, and the supernatants were pooled together. Protein 

content was determined using the BCA assay (Pierce). Luciferase activity was assayed 

using the luciferase assay system (Promega) by measuring light output on the Biotek 

Synergy H4 plate reader over a 10 second integration period. The surrounding muscles 
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were also processed and assayed for luciferase activity, but no luciferase activity was 

detected.  

3.2.4 Immunohistochemistry and antibodies 

 Extracted tissue was fixed using 4% paraformaldehyde in PBS overnight, 

embedded in paraffin, and sectioned to 5 µm thick. To stain tissue, sections were 

deparaffinized, antigen retrieval was performed in citrate buffer (Dako, Carpinteria, CA) 

for 20 minutes under steam, and then tissue was permeabilized in PBS with 0.1% 

tween-20 (CalBioChem) (PBST) for 10 minutes. Tissue was blocked with 5% donkey 

serum in PBST, incubated with primary antibodies (at a 1:200 dilution) overnight at 4C in 

PBST, washed three times in PBST, incubated with the secondary antibody for one hour 

in PBST, stained with DAPI, and then mounted with prolong gold (Life Technologies). 

Primary antibodies used were rat anti-MHCII (eBioscience), rabbit anti-CD11b (Abcam), 

rabbit anti-lyve-1 (Pierce), goat anti-RIG-I (Santa-Cruz cat# sc-48929), goat anti-MDA5 

(ProSci, cat# 4037), rabbit anti-MAVS (Bethyl Laboratories cat# IHC-00477), rabbit anti-

TLR7 (Novus, cat# NBP2-24906), and mouse anti-IRAK4 (LS Bio, cat# LS BIO452). 

Secondary antibodies were purchased pre-conjugated to either Alexa Fluor 488 (Life 

Technologies), Cy3 (Jackson Immuno), or Alexa Fluor 647 (Life Technologies). Primary 

and secondary antibodies were used at a dilution of 1:200. 

3.2.5 Proximity ligation assay 

 Following deparaffinization, antigen retrieval, and permeabilization as described 

above, tissue was blocked for 1 h with a solution containing 0.5% Tween-20, 0.1% Triton 

X-100, 0.1% gelatin (Aurion), 2% donkey serum (VWR) and 1% bovine serum albumin 

(EMD) in PBS. Tissue was then stained with primary antibodies as specified above 

overnight at 4C diluted 1:500 in a solution of 0.25% gelatin, 0.5% donkey serum, and 1% 
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BSA in PBS. All remaining steps were in accordance with manufacturer’s instructions 

(Olink Bioscience).  

3.2.6 Proximity ligation assay image quantification and statistics  

 All samples for PLA were imaged and quantified by a researcher blind to the 

sample identity. Six images were taken of each tissue section and a total of four animals 

were used per group per time point. The PLA frequency/imaging frame was quantified 

using Volocity software (Perkin Elmer). The PLA signal was identified as objects by the 

overall fluorescence intensity, using a minimum size of 0.2 µm. Touching punctae were 

separated into individual signals using Volocity's ‘separate touching objects’ tool. 

Statistical analysis on the data was conducted using MATLAB and Statistics Toolbox 

R2015a (The Mathworks, Inc., Natick, Massachusetts). The data were transformed to 

better approximate normality using variance-stabilizing and symmetrizing power 

transformation with exponent 1/3. The cube-roots of observations also minimized the 

Jarque-Bera statistic measuring discrepancy from the normality. A hierarchical ANOVA 

was performed on the cube-root transformed data followed by Tukey’s multiple 

comparison battery of tests.  MATLAB code and additional figures regarding statistical 

analyses are included in Appendix A.  

3.2.7 Fluorescence imaging  

 Images were taken using an UltraVIEW spinning disk confocal microscope, Zeiss 

LSM 510 Meta, a Hamamatsu Flash 4.0v2 CMOS camera and an 89000 Sedat Quad-ET 

filter set. A 40x, NA 1.3 Zeiss EC Plan-Neofluar oil objective was used for all tiled 

images and a 63×, NA 1.4 Zeiss Plan-Apochromat oil objective was used for all other 

images. Imaging was controlled by Volocity acquisition software (PerkinElmer). Image 
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stacks were recorded at 350 nm intervals. Tiled images of the lymph node and muscle 

were stitched using Volocity.  

3.2.8 Flow cytometry and statistics 

 Lymph nodes and muscle were removed with the assistance of the Fluobeam 

NIR imaging system (Fluoptics) at indicated time points. Muscle tissue was dissociated 

with Type IV collagenase (Worthington Biochemical) for 1.5 hours at 37C with gentle 

agitation. Lymph node and muscle samples were then dissociated by straining through a 

40 µm cell strainer with gentle agitation from a syringe plunger. Cells were washed in 

PBS + 2% FBS, blocked with Fc block (BD Biosciences) according to the manufacturer's 

directions, and then stained with a panel of antibodies diluted 1:100 in PBS with Fc block 

for 30 minutes on ice. Cells were washed with PBS + 2% FBS, fixed with 4% 

paraformaldehyde in PBS for 10 minutes, washed with PBS+2% FBS and stored at 4C 

until analysis on the flow cytometer. Flow cytometry was performed with a BD LSRII and 

analyzed with FlowJo software. Samples were stained using two different antibody 

panels, either anti-F4/80 BV421, anti-LYVE1 Alexa 488 (eBioscience), I-Ad PE, anti 

CD11c APC-Cy7, and anti CD11b Alexa 647, or anti CD3 BV421; anti CD45R Alexa 488 

(Biolegend), anti CD335 PE, anti CD11b Alexa 647, and anti CD19 APC-Cy7. IVT 

mRNA was labeled with DyLight 680. All antibodies were purchased from BD 

Biosciences unless otherwise noted. ANOVA followed by Hsu's multiple comparisons 

with best post analysis was performed to determine significance using JMP Pro software 

(SAS, Cary, NC). 

3.2.9 Cell lines 

Sol8 mouse myoblast cells (ATCC CRL-2174) and HeLa human epithelial cells 

(ATCC CCL-2) were maintained in High Glucose Dulbecco’s Modified Eagle’s Medium 
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(DMEM) (Lonza) with 20% FBS (Hyclone) for Sol8 cells and 10% FBS for HeLa cells, 

and 100 U/ml penicillin and streptomycin (Invitrogen).  

3.2.10 siRNA transfection and quantitative reverse transcriptase 

polymerase chain reaction 

 Cells were electroporated using the Neon transfection system (ThermoFisher 

Scientific) (106 cells in 100ul) using 200µM indicated siRNA (Dharmacon, On-

TARGETplus Smartpool), and then plated in 24 well plates. After 48 hours, cells were 

transfected with the mRNA vaccine (400ng) using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s protocol. Six hours later, total RNA was collected with 

the QIAGEN RNeasy, which used an on-column DNAse treatment. RNA was quantified 

by absorbance at 260nm and converted to cDNA using the RT2 First Strand kit (SA 

Biosciences). qRT-PCR was performed using the StepOnePlus real-time PCR system 

(Applied Biosciences) using 15 ng of cDNA and SYBR green mastermix (SA 

Biosciences), which was used according to manufacturer's directions. Gene-specific 

primers for GAPDH, ACTB, IFNβ-1, IL-6, and IL-8 were designed by and purchased from 

Fluidigm. Primers for DDX58 (RIG-I), IFIH1 (MDA5), and TLR7 were designed by and 

purchased from SA Biosciences. Fold changes were calculated using the ddCT method 

on StepOne software in reference to the genes GAPDH and ACTB. For cytokine 

responses, average fold change over at least three experiments is reported in reference 

to individual control samples treated with Lipofectamine only. For reporting PRR 

transcript levels, results from independent experiments are shown. Fold changes are 

reported in reference to samples treated with control siRNA and Lipofectamine only 

treatment. The standard error of the mean is shown. Each experiment was repeated at 

least three times. ANOVA followed by Tukey-Kramer's post analysis was performed on 
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data from at least three independent experiments to determine significance using JMP 

Pro software. 

3.3 Results 

 IVT mRNA was labeled with MTRIPS that targeted the 3' UTR as shown in 

Figure 3.2 prior to injection. Previous work in our lab has not found MTRIP labeling to 

affect the behavior or trafficking of target mRNA molecules, nor have we found MTRIP 

labeling to elicit cellular immune responses (147-150). IVT mRNA was then incubated 

with a cholesterol-derived lipid (cholk) at a 1:10 charge ratio to form nanoparticles. 

Dynamic light scattering measured nanoparticles to be approximately 300 nm in 

diameter and to have a zeta potential of approximately -15.3 mV.  To test for IVT mRNA 

functionality, the entire muscle was removed and assayed for luciferase activity (Figure 

3.3).  IVT mRNA delivered with or without cholk leads to luciferase activity.  Interestingly, 

we see a higher variability in luciferase activity when IVT mRNA is injected alone 

compared to when it is delivered along with cholk. 
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Figure 3.2. Experimental overview. Luciferase encoding IVT mRNA was labeled in the 
3’ UTR with MTRIPS.  IVT mRNA was then complexed with cholk to form a nanoparticle.  
IVT mRNA alone, or complexed to cholk was injected i.m. into BALB/c mice.  
 
 
 
 

 
Figure 3.3. Luciferase expression in the anterior tibialis 16 hours following IVT 
mRNA injection.  The entire muscle was removed and homogenized prior to performing 
a luciferase assay.  Luciferase activity is expressed relative to total protein content in 
homogenized muscle.   
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3.3.1 Spatial distribution of IVT mRNA within muscle and cell 

infiltration to site of injection 

 We next wanted to assess how nanoparticle-mediated delivery of IVT mRNA 

affected its distribution in the muscle.  To do this, IVT mRNA was fluorescently labeled 

with MTRIPs in the 3’ untranslated region, if needed, complexed to cholk, and then 

injected i.m.  IVT mRNA distributions were then visualized with microscopy 1.5 and 16 

hours after i.m. injection (Figure 3.4).  At 1.5 hours following injection, IVT mRNA (red) is 

evenly distributed throughout the muscle and primarily in areas between skeletal muscle 

fibers for IVT mRNA delivered alone or as a nanoparticle with cholk.  Sixteen hours 

following injection, the free IVT mRNA appears to be somewhat cleared from the muscle 

compared to nanoparticle-mediated delivery. Infiltration of CD11b+ cells (green) and 

MHCII+ cells (white) is also evident at 16 hours following injection, and more pronounced 

in muscles injected with mRNA+cholk.  To quantify these observations, we used flow 

cytometry to assess uptake of mRNA 16 hours following injection. As shown in Figure 

3.5, IVT mRNA injection leads to increased presence of CD11b+ cells in the muscle. A 

fraction of the CD11b+ cells also costained for IVT mRNA. We also saw increased levels 

of MHCII+ cells as well as infiltration of natural killer cells, which were identified by dual 

staining of CD335 and CD11b. There was no increase in macrophages, as detected by 

dual staining of F4/80+ CD11b+.  
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Figure 3.4. Distribution of IVT mRNA following injection and uptake by CD11b+ 
and MHCII+ cells. A.) Histological section of skeletal muscle tissue 1.5 and 16 hours 
following intramuscular injection into the anterior tibialis of 10µg of luciferase mRNA with 
and without cholk.  IVT mRNA is shown in red, CD11b staining is green, MHCII is white, 
and nuclei (DAPI) is blue.  Scale bar is 100 µm. B.) Scale bar is 20 µm 
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Figure 3.5. Cell types containing IVT mRNA 16 hours after i.m. injection. 16 hours 
following intramuscular injection, the whole anterior tibialis was dissociated into a single 
cell suspension and flow cytometry was performed to determine the indicated cell types 
in the area and if they had taken up labeled IVT mRNA. Mean values and the standard 
error of measurement are shown (n=3). *indicates p<0.05, ANOVA followed by Hsu's 
multiple comparison with best.  
 
 
 

3.3.2 RNA uptake by TLR7+, RIG-I+ and MDA5+ cells 

 We next wanted to assess expression of the PRRs TLR7, RIG-I, and MDA5 in 

skeletal muscle tissue following IVT mRNA injection.  We first stained tissue from a 

sham injection control to understand the baseline expression levels of these PRRs 

(Figure 3.6).  Figure 3.7 shows representative images of staining for these PRRs 16 

hours following injection with IVT mRNA.  We see that cells with elevated levels of these 

PRRs are distributed throughout the tissue and that these cell types are associated with 

IVT mRNA.  To assess staining specificity of staining, control tissue samples were 

stained only with the secondary antibodies (Figure 3.8).  The marked enhancement of 

PRR staining following IVT mRNA injection may be mediated by both upregulation of 

PRRs in the extant cell populations in response to PRR activation as well as infiltration 

of cell types that highly express certain PRRs.  This is supported by Figure 3.9, which 

shows that TLR7, RIG-I, and MDA5 transcripts are upregulated in response to IVT 

mRNA transfection.  
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Figure 3.6. TLR7, RIG-I, and MDA5 staining in sham injected skeletal muscle 
tissue. Histological sections of skeletal muscle tissue 16 hours following intramuscular 
injection into the anterior tibialis with RiLa.  In the merged image, the indicated PRR is 
shown in white, the channel used for IVT mRNA imaging would be shown in red, and 
DAPI staining for nuclei is shown in blue.  Scale bars are 12 µm.  
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Figure 3.7. IVT mRNA uptake by TLR7+, RIG-I+, and MDA5+ cells. Histological 
section of skeletal muscle tissue 16 hours following i.m. injection into the anterior tibialis 
of 10 µg of MTRIP-labeled luciferase mRNA.  In the merged image, the indicated PRR is 
shown in white, IVT mRNA is shown in red, and the merged image includes nuclei 
(DAPI) is blue.  Scale bars are 12 µm.  
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Figure 3.8. Immunohistochemistry staining controls for TLR7, RIG-I, and MDA5 
detection.  Histological sections of skeletal muscle tissue 16 hours following i.m. 
injection into the anterior tibialis with RiLa.  As a negative control, tissue was stained 
with the appropriate secondary antibody for the indicated PRRs and imaged with the 
same acquisition settings used in Figures 3.6 and 3.7.  In the merged image, the 
indicated PRR is shown in white, IVT mRNA is shown in red, and nuclei (DAPI) is blue.  
Scale bars are 11 µm.  
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Figure 3.9. Effect of PRR knockdown on cell responses to IVT mRNA transfection.  
Clear bars are Lipofectamine 2000 only, dashed is Lipofectamine+ RNA. A.) Sol8 mouse 
myoblasts were electroporated with siRNA targeting murine TLR7.  Two days later, cells 
were transfected with luciferase IVT mRNA and then analyzed with qRT-PCR six hours 
later.  HeLA human epithelial cells were electroporated with siRNA targeting murine 
RIG-I. B.) or MDA5. C.)  Two days later, cells were transfected with luciferase IVT 
mRNA and then analyzed with qRT-PCR six hours later for RIG-I and 9 hours later for 
MDA5 siRNA studies. * Indicates p<0.05, ANOVA followed by Tukey’s post analysis. 
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 We next assessed how cholk nanoparticle-mediated delivery affects TLR7 

activation. To visualize TLR7 activation, we developed a PLA that detects formation of 

the myddosome signaling complex. The myddosome complex consists of a variety of 

proteins including TLR7, MYD88, and IRAK4 that come together when TLR7 is activated 

(142, 151). To detect this complex, we assayed for the proximity of IRAK4 and TLR7 on 

muscle tissue sections 1.5, 6, and 16 hours following IVT mRNA injection. The PLA 

allows visualization of this interaction via fluorescent puncta, which we imaged with 

confocal microscopy (Figure 3.10A). To account for false-positive PLA signals that could 

occur as a result of TLR7 or IRAK4 protein levels being upregulated in response to 

immune stimulation, we also ran two controls where an isotype control antibody was 

substituted for either primary antibody involved in the assay. PLA signals were quantified 

for each condition, and aggregated data is shown in Figure 3.10B. IVT mRNA causes 

TLR7 myddosome formation as early as 1.5 hours and lasting until 16 hours following 

injection.  Analyzing the data across all time points (Figure 3.10C) shows that IVT mRNA 

+ cholk also leads to TR7 activation, but to a lesser degree than IVT mRNA alone. 

 We also wanted to assess RIG-I and MDA5 detection of IVT mRNA. Upon 

activation, both RIG-I and MDA5 form a protein complex, known as signalosomes, with 

the adaptor protein IPS-1 (138, 152). To detect their activation, we developed PLA 

assays to identify RIG-I and MDA5 signalosome formation. Figure 3.11 and Figure 3.12 

show RIG-I and MDA5 activation, respectively. In both cases, PLA signals are evident 

beginning 6 hours after injection. However, there is more pronounced activation at 16 

hours. Microscopy shows that cells with strong PLA signals for RIG-I and MDA5 show 

diffuse IVT RNA signal, suggesting that the RNA is cytoplasmic and available to interact 

with RIG-I or MDA5.  Analysis of the data across all time points for RIG-I and MDA5 

(Figures 3.11C and 3.12C, respectively) shows that mRNA+cholk leads to activation of 

both of these PRRs.   
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Figure 3.10. PLA detection of TLR7-IRAK4 signaling complex following IVT mRNA 
injection. (A) Representative images of PLA: IVT mRNA (red), PLA signals (white), and 
nuclei (blue).  Scale bar is 11 µm (leftmost panel) and 7 µm (right most panel). (B) 
Quantified PLA data. Each data point represents the number of PLA signals quantified in 
one confocal image; red bar indicates the median PLA counts per condition. Each 
symbol represents a unique animal.  IC indicates antibody isotype control. (C) Means 
and approximate 95% confidence intervals of transformed PLA counts for each condition 
across all time points.  Significant differences were tested by a hierarchical ANOVA 
followed by Tukey’s multiple comparisons, * indicates p<0.05.
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Figure 3.11. PLA detection of RIG-I-IPS-1 signaling complex following IVT mRNA 
injection. (A) Representative images of PLA: IVT mRNA (red), PLA signals (white), and 
nuclei (blue).  Scale bar is 11 µm (leftmost panel) and 7 µm (right most panel). (B) 
Quantified PLA data. Each data point represents the number of PLA signals quantified in 
one confocal image; red bar indicates the median PLA counts per condition. Each 
symbol represents a unique animal.  IC indicates antibody isotype control. (C) Means 
and approximate 95% confidence intervals of transformed PLA counts for each condition 
across all time points.  Significant differences were tested by a hierarchical ANOVA 
followed by Tukey’s multiple comparisons, * indicates p<0.05.  
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Figure 3.12. PLA detection of MDA5-IPS-1 signaling complex following IVT mRNA 
injection. (A) Representative images of PLA: IVT mRNA (red), PLA signals (white), and 
nuclei (blue).  Scale bar is 11 µm (leftmost panel) and 7 µm (right most panel). (B) 
Quantified PLA data. Each data point represents the number of PLA signals quantified in 
one confocal image; red bar indicates the median PLA counts per condition. Each 
symbol represents a unique animal.  IC indicates antibody isotype control. (C) Means 
and approximate 95% confidence intervals of transformed PLA counts for each condition 
across all time points.  Significant differences were tested by a hierarchical ANOVA 
followed by Tukey’s multiple comparisons, * indicates p<0.05. 
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3.3.3 IVT mRNA is detected in lymph nodes in a variety of cell 

types 

 We next assessed if mRNA was trafficked to lymph nodes following i.m. 

injections. Here, MTRIPS with DyLight 680 fluors were used to label IVT mRNA. 

Following injection, the Fluobeam imaging system (Fluoptics) was used on recently 

euthanized mice to determine if IVT mRNA was present in the draining lymph nodes 

(representative image shown in Figure 3.13). The Fluobeam system detected IVT mRNA 

in the lumbar aortic, inguinal, and popliteal lymph node. Figure 3.14C shows the number 

of lymph nodes where IVT mRNA was found using the Fluoptics system. Interestingly, 

cholk-mediated delivery allowed for more consistent uptake in all lymph nodes compared 

to mRNA delivered alone. To see if mRNA+cholk affected the level of IVT mRNA present 

in the lymph node we analyzed lymph nodes with flow cytometry. Figure 3.14A shows 

that IVT mRNA was present in lymph nodes at 1.5 hours following injection, and the 

amount of IVT mRNA in the lymph nodes modestly increases at 16 hours following 

injection. Lymph nodes were also histologically analyzed to determine IVT mRNA 

distribution, and a representative image is shown in Figure 3.13 with zoomed in regions 

shown in Figures 3.13B and 3.13C. Here, lymph nodes were stained for Lyve-1 to 

delineate sinuses. It is evident that IVT mRNA is closely associated with the sinuses. To 

better understand what cell types had taken up the IVT mRNA, we repeated the 

experiment and analyzed the lymph nodes with flow cytometry 16 hours following i.m. 

injection (Figure 3.14B). IVT mRNA was largely shown to be in antigen presenting cells. 

A significant portion of MHCII+, CD11b+, and CD19+CD3- (B cells) lymph node cells 

were positive for IVT mRNA signal. 
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Figure 3.13.  IVT mRNA distribution in draining lymph node.  A.) Histological cross-
section of the lumbar aortic lymph node 16hours after i.m. into the anterior tibialis of 
10µg of luciferase mRNA.  IVT mRNA is shown in red and lyve-1 staining is shown in 
green.  IVT mRNA associates with lyve-1 staining, indicating presence in lymph node 
lymphatic vessels.  Scale bar is 300 µm. B.) Blow-up image of the area indicated in (A) 
with scale bar of 50 µm and C.) Blow-up image of the area indicated in (B) with a scale 
bar of 18 µm.  For both B and C, the merged image shows IVT mRNA in red, Lyve-1 in 
green and nuclei (DAPI) in blue.  It is evident that mRNA is around lymphatic vessels, 
but does not always associate with lyve-1 positive cells.  
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Figure 3.14. IVT mRNA presence in draining lymph nodes. A.) Mice were injected 
with MTRIP-labeled IVT mRNA with and without complexation to cholk.  1.5 and 16 
hours following injection, lumbar aortic lymph node were removed and analyzed with 
flow cytometry.  The percent of cells positive for MTRIP label are shown as a fraction of 
all cells analyzed. B.) Flow cytometry analysis of the lymph nodes.  Lymph node cells 
phenotypes and the percent of cells containing IVT mRNA are shown for mRNA+cholk 
(n=3). C.) Aggregate data of positive detection of IVT mRNA in lymph nodes 16 hours 
following injection. 
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3.3.4 Lymph node cells show TLR7, RIG-I, and MDA5 activation in 

response to IVT mRNA injection 

 Lastly, extracted lymph nodes were assessed for PRR activation. PLAs were 

performed as described earlier on lumbar aortic lymph nodes excised 16 hours post 

injection (Figure 3.15). It is apparent that cells in the lymph node show activation by 

TLR7, RIG-I, and MDA5. IVT mRNA delivered alone shows activation of TLR7 as also 

found in the muscle.  We also see that mRNA+cholk activates RIG-I.  Interestingly, we 

also see that mRNA delivered alone also shows significant activation of MDA5, where 

mRNA+cholk does not.   
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Figure 3.15. PLA assays showing activation of TLR7, RIG-I, and MDA5 signaling 
pathways.  Quantified PLA data of A.) TLR7-IRAK4 interaction, B.) RIG-I-IPS-1 
interaction and C.) MDA5-IPS-1 interaction in sections of the lumbar aortic lymph node.  
Mice were injected with MTRIP labeled IVT-mRNA and the lumbar aortic lymph nodes 
were collected 16 hours post injection.  PLA was quantified from 6 images per mouse; 4 
mice per condition. The bar indicates the median PLA count across all images for given 
conditions. IC indicates isotype control antibody. Significant differences were tested by a 
hierarchical ANOVA on collected data transformed to fit a normal distribution, * indicates 
p<0.05.   
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3.4 Conclusion 
 This study used PLAs to follow TLR7, RIG-I, and MDA5 activation by i.m. 

injection of IVT mRNA over time.  This methodology allowed for PRR activation to be 

visualized in situ without perturbing paracrine and autocrine signaling events.  The 

kinetics of observed PRR activation follows a predicted flow, as endosomal TLR7 is 

activated as early as 1.5 hours and the cytoplasmic PRR MDA5 shows most prominent 

activation 16 hours following injection. We see that cholk-mediated delivery of IVT 

mRNA reduces TLR7 activation and enhances RIG-I and MDA5 activation in the muscle. 

Cholk-mediated mRNA delivery may enhance the cytoplasmic presence of IVT mRNA, 

perhaps by facilitating endosomal escape, or altering the route of cellular entry.  Another 

possibility is that cholk shields IVT mRNA from interacting with TLR7.   

PLA detection of PRR signaling only offers visualization of PRR activation during 

a single snapshot in time.  The length of time that each signaling complex lasts is 

unclear, and it is likely that each signaling complex has a unique stability.  Additionally, 

the efficiency of antibody binding and ligation of the secondary antibodies is also unique 

for each signaling complex.  Therefore, comparisons can only be made between 

different treatment groups and time points in the same PRR, and should not be made 

between two different PRR signaling complexes.  Another limitation of this approach is 

that while we can detect the occurrence of activation through certain PRRs, the 

importance of each individual pathway for achieving functional outcomes is not 

identified.  

To the best of our knowledge, this is the first time that MDA5 has been 

experimentally implicated as a PRR that detects IVT mRNA. This is somewhat 

surprising, as MDA5 is known to detect long double-stranded RNAs, and IVT mRNA is 

single stranded. We hypothesize that IVT mRNA develops secondary structures that are 



www.manaraa.com

71 
 

detected by MDA5. While RNAs are well known to form secondary structures outside of 

a cellular environment, probing of RNA secondary structure in vivo has shown that 

native RNAs have dramatically reduced secondary structures (153). This is likely 

because cellular RNAs are always in ribonucleoprotein complexes, potentially shielding 

the development of secondary structures and interaction with MDA5. IVT mRNA; 

however, is delivered without any bound proteins, potentially allowing for the enhanced 

formation of secondary structures compared to native mRNAs, and thus activation of 

MDA5.   

It is also surprising that IVT mRNA activates RIG-I, as natural ligands are RNAs 

with 5’ triphosphates (uncapped RNAs).  IVT mRNA should not have 5’ triphosphates, as 

theoretically, the 5’ cap substitute 5’ triphosphates.  However, current methodologies for 

synthesis of IVT mRNA enzymatically add a 5’ cap and then treat IVT mRNA with 

Antarctic phosphatase to remove triphosphates from uncapped IVT mRNAs.  It is difficult 

to purify out any uncapped RNAs from the final IVT mRNA cocktail, and some 5’ 

triphosphates may contaminate the IVT mRNA solution.  Another possibility to explain 

RIG-I activation is that 5’ triphosphates are created by activation of the 2′-5′ 

oligoadenylate synthase (OAS) pathway.  OAS proteins are antiviral receptors that 

detect dsRNA.  Upon detection of dsRNA, OAS-L activates the latent endoribonuclease 

RNAs-L, which digests RNA into RIG-I activating pieces (154-156).  

Direct observation of the PRRs that detect IVT mRNA allows for targeted 

adjustments to IVT mRNA vaccine formulation and more rational modulation of the 

innate immune responses.  We now have evidence that double-stranded regions in IVT 

mRNA activate PRRs.  Future efforts could focus on removing the secondary structure 

from IVT mRNA.  Additionally, our findings highlight the fact that a delivery vehicle can 

influence IVT mRNA’s interaction with the innate immune system. Future design of 

delivery vehicles may aim to either avoid or facilitate IVT mRNA interaction with PRRs. 
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As TLR7 stimulation is beneficial for some vaccine applications (157), but not for others 

(158); delivery vehicle design may be tailored to interact with the most appropriate PRRs 

for a given vaccine application.  

This study also showed that cholk nanoparticle-mediated delivery of IVT mRNA 

enhanced infiltration of immune cells to the skeletal muscle.  As shown in Figure 3.4, 

particle-mediated delivery appeared to enhance IVT mRNA retention at the site of 

injection.  This may be simply due to how the increased size of the mRNA reduced its 

mobility out of the muscle. This also may have led to increased localization of the innate 

immune responses, which was more easily located by infiltrating immune cells.  The 

enhanced infiltration of immune cells observed upon IVT mRNA+cholk injection may also 

be due to increased activation of cytoplasmic PRRs, particularly RIG-I and MDA5, which 

trigger strong type I interferon responses (159).  Type I interferon has been shown to be 

required for natural killer cell accumulation at a site of infection (160) and is also known 

to promote the migration of antigen presenting cells to lymph nodes (160, 161). Thus, 

the increased infiltration of immune cells to the muscle following mRNA+cholk delivery 

may be responsible for the enhanced cell-mediated trafficking of IVT mRNA from the 

muscle to the lymph nodes.   
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CHAPTER 4 

DEVELOPMENT OF IVT MRNA WITH PROGRAMMABLE INNATE 

IMMUNE STIMULATION 

4.1 Introduction 
This chapter presents a strategy to enhance immunogenicity of IVT mRNA 

without affecting transgene protein production.  As described in Figure 4.2, we use a 

modular approach to build immunostimulatory IVT mRNA with programmable PRR 

activation. This approach may be used with modified or unmodified IVT mRNA to 

modulate the stimulatory responses. This strategy enables modulation of transgene 

production and immune stimulation of IVT mRNA on a broader spectrum than otherwise 

capable.   

The success of a vaccine is likely dependent upon unique stimulation 

characteristics of innate immunity. For example, the co-delivery of an RSV vaccine with 

a TLR9 adjuvant improves immunological protection against the virus; however, the 

same vaccine with a TLR7 adjuvant results in no improvement over the vaccine alone 

(158).  In the case of an HIV vaccine, co-delivery of either TLR7 or TLR9 adjuvants with 

the vaccine improved protective responses; this effect was not seen by co-delivery with 

a TLR8 adjuvant (162).  Several studies show that more protective and longer lasting 

immune responses are developed when a vaccine activates multiple TLRs (134, 163).  

Researchers currently seek to enhance the immunogenicity of IVT mRNA 

vaccines to enhance protective responses.  For example, an anti-melanoma vaccine 

undergoing clinical trials is supplemented with granulocyte macrophage colony-

stimulating factor (GM-CSF) as an adjuvant (23, 164).  A complex of IVT mRNA and 
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protamine is also currently in clinical trials.  This formulation is believed to enhance 

TLR7 recognition of the vaccine (20, 22).   

There is evidence to suggest that vaccine performance is weakened due to the 

interferons produced in response to unmodified IVT mRNA.  Pollard et al. demonstrate 

this using interferon receptor alpha knock out (IFNαR-/-) animals.  Figure 4.1 shows that 

IFNαR-/- mice have more interferon-gamma and IL-2 secreting splenocytes than those 

from the wild type when exposed to the antigenic protein. The study also demonstrates 

that interferon responses were detrimental to antigen protein production (42).   

 

 
Figure 4.1. T cell responses by wild-type (WT) and interferon alpha-receptor 
knockout mice (IFN αR−/−) to an IVT mRNA vaccine.  Antigen-specific IFN-γ (A) and 
interleukin-2 (B) secreting T cells were determined by enzyme-linked immunosorbent 
spot on isolated spleens. Figure adapted from Pollard et al (42).   
 
 
 

Here, we show that IVT mRNA that incorporates the modified base M1Y in place 

of uridine elicits reduced interferon responses.  M1Y substitution also enhances 

transgene protein production.  We tethered adjuvants to M1Y IVT mRNA to enable 

activation of multiple TLRs.  Programmable IVT mRNA enables future work that may 

explore how the amount and/or type of PRR adjuvants affect vaccine performance.   
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Figure 4.2 Approach for building programmable IVT mRNA.  As shown in (A), a 
known 3'UTR is incorporated into the IVT mRNA.  Oligonucleotides bearing a 
Neutravidin are designed to be complementary to the 3' UTR.  Biotinylated agonists are 
incubated with the targeting oligonucleotides, which are annealed to the IVT mRNA.  (B) 
Shows that immunostimulatory IVT mRNA can be constructed to contain multiple types 
of agonists, as well as to contain varying amounts of agonists.   
 
 

4.2 Materials and Methods 

4.2.1 Preparation of Neutravidin-labeled targeting 

oligonucleotides 

Four 2'O-Methyl RNA/DNA chimeric oligonucleotides targeting the 3' UTR of the 

ovalbumin IVT mRNA were designed and purchased from Biosearch Technologies.  The 

sequence of each oligonucleotide is: 

1.) TTTTTTTMOGMOCMOAMOAMOGMOCMOCMOCMOCMOGMOCMOAMOGMOAMOAMOGMOG 

2.) TTTATTTMOAMOGMOAMOGMOAMOAMOGMOAMOAMOGMOGMOGMOCMOAMOUMOGMOG 
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3.) TTTTTTAMOCMOCMOAMOAMOGMOAMOGMOGMOUMOAMOCMOAMOGMOGMOUMOGMOC 

4.) TTTTTTTMOCMOUMOAMOCMOUMOCMOAMOGMOGMOCMOUMOUMOUMOAMOUMOUMOC 

  where MO indicates a 2'O-methyl RNA linkage 

 

Each oligonucleotide contained a disulfide C6 5' modification.  Neutravidin was 

bound to the 5' end of each using Solulink chemistry as follows.  The disulfide was 

reduced by incubation with TCEP (5mM) (Thermo Fisher Scientific).  Reducing agent 

was removed by repeated dilution in PBS and centrifugal filtration (3kDa MWCO, 

Millipore).  Oligonucleotides were then incubated overnight with 20 µg of Maleimide 

HyNic (Solulink) along with 0.3 mM ethylenediaminetetraacetic acid (EDTA).  The 

following day, Neutravidin was labeled with succinimidyl-4-formylbenzamide (S4-FB). 

500 µg Neutravidin was incubated with 20 µg of SF-FB in Solulink's modification buffer 

for 2 hours at room temperature.  Neutravidin was then buffer exchanged into Soulink’s 

conjugation buffer with centrifugal filtration (30kDA MWCO, Millipore).  The modified 

oligonucleotides were individually buffer exchanged into conjugation buffer with 

centrifugal filtration (3kDA MWCO).  Neutravidin and each oligonucleotide were then 

allowed to react by incubation for two hours at room temperature in a 2:1 

oligonucleotide:Neutravidin molar ratio in the presence of 1x Turbolink catalyst 

(Solulink).  Any unconjugated oligonucleotides were removed by centrifugal filtration 

(30kDA MWCO).  Protein content in the remaining solution was determined by 

bicinchoninic acid assay (Pierce) against a Neutravidin standard curve.  Nucleic acid 

content was determined by measuring the absorbance at 260nm using the Nanodrop 

2000 (Thermo Scientific). Approximately a 1:1 molar ratio of Neutravidin:oligonucleotide 

was found for each targeting sequence.   
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4.2.2 Preparation of IVT mRNA 

IVT mRNA was prepared according to the DNA template provided in the 

appendix. For cytoplasmic ovalbumin, the DNA template was modified from the PCL-

neo-cOVA plasmid from Addgene (Plasmid #25097).  The Kozak consensus sequence 

was modified from AATTCATGG to the more common CCACCATGG.  The 3' UTR from 

murine alpha globin was also inserted into the DNA template. Prior to transcription, the 

DNA template was amplified using the Q5 high-fidelity DNA polymerase (New England 

Biolabs).  The PCR product was purified, digested with the restriction enzyme NOTI to 

create a 5' overhang, and then purified again.  The QIAquick PCR Purification spin 

column (QIAGEN) was used to purify the DNA template.  The T7 mScript Standard 

mRNA Production System was used to generate mRNA (Cellscript), add a Cap-1 

structure, and enzymatically add a poly(A) tail.  The manufacturer's instruction were 

followed; however, the RNeasy mini kit (QIAGEN) was used to purify IVT mRNA when 

necessary.  To incorporate modified bases, ribonucleotide cocktails were prepared of 

25mM of each base.  Pseudouridine-5'-Triphosphate, 5-Methylcytidine-5'-Triphosphate, 

and N1-Methylpseudouridine-5'-Triphosphate were purchased from TriLink 

Biotechnologies; adenosine triphosphate, guanosine triphosphate were purchased from 

USB. Cytosine triphosphate was purchased from Affymetrix.  Following, IVT mRNA was 

treated with Antarctic Phosphatase (New England Biolabs) for 30 min to remove residual 

5′-triphosphates, and then cleaned up and quantified using the Nanodrop 2000 (Thermo 

Scientific).  

4.2.3 Preparation of agonist tethered IVT mRNA 

Biotin conjugated adjuvants were purchased: ODN 1826 Biotin, Pam2CSK4 

Biotin, and CL264 Biotin were purchased from Invivogen.  Biotinylated agonists were 

incubated with Neutravidin bound oligonucleotides individually at room temperature for 1 

http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=2680
http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=2675
http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=6705
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hour in PBS at a 1:5 molar ratio of Neutravidin to Biotinylated agonist.  Unbound agonist 

was removed with centrifugal filtration (30kDA MWCO).  To anneal the targeting 

sequence to IVT mRNA, IVT mRNA was first melted at 75C for 5 minutes to remove the 

secondary structure, and then immediately placed on ice. Each Neutravidin targeting 

probe was incubated with IVT mRNA at a 1:1 molar ratio for approximately 12 hours at 

37C.  To remove unbound targeting oligonucleotides, IVT mRNA was filtered through a 

200 kDA filter (Advantec), concentrated using a 30 kDA centrifugal filter, and then 

quantified by measuring the absorbance at 260 nm. To confirm removal of unbound 

adjuvant, a mock reaction control was used where an equivalent amount of Neutravidin 

targeting probe-biotin-adjuvant complex was incubated overnight without IVT mRNA. 

The sample was purified using a 200 kDA filter.  Cells were treated with the mock 

reaction mixed with an appropriate amount of IVT mRNA using Lipofectamine 2000.  

4.2.4 Characterization of Binding Percentage 

 The amount of CL264 bound to IVT mRNA was approximated by substituting 

biotinylated Atto 565 for the adjuvant molecule as discussed in sections 4.2.2 and 4.2.3.  

Following purification, the fluorescence and 260 absorbance was measured of the 

fluorescently labeled IVT mRNA.  IVT mRNA fluorescence was compared to a standard 

curve of Atto 565 dye to determine the ratio of dye bound to IVT mRNA.  

4.2.5 Cell Lines and IVT mRNA transfection 

 The RAW264.7 mouse macrophage cell line (ATCC TIB-71) and HeLa human 

epithelial cells (ATCC CCL-2) were maintained in High Glucose Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Lonza) with 10% FBS (Hyclone) and 100 U/ml penicillin and 

streptomycin (Invitrogen). Approximately 60,000 cells were seeded in a 24 well plate the 
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evening prior to stimulation. Cells were transfected with the indicated treatment using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. 

4.2.6 In vitro stimulation and qRT-PCR 

 Cells were treated as mentioned in section 4.2.5.  Six hours following 

transfection, total RNA was collected with the QIAGEN RNeasy, which used an on-

column DNAse treatment. RNA was quantified by absorbance at 260 nm and converted 

to cDNA using the RT2 First Strand kit (SA Biosciences). qRT-PCR was performed 

using the StepOnePlus real-time PCR system (Applied Biosciences) using 15ng of 

cDNA and SYBR green master mix (SA Biosciences), which was used according to 

manufacturer's directions. Gene-specific primers for ACTB, IFNβ-1, and IL-1β and IL-6 

were designed by and purchased from Fluidigm. Fold changes and 95% confidence 

intervals were calculated using the ddCT method on StepOne software in reference to 

ACTB.  Significant differences were determined by an ANOVA followed by Tukey-

Kramer's post analysis. Each experiment was independently repeated at least two times. 

4.2.7 Flow cytometry of protein expression 

 Cells were treated as mentioned in section 4.2.5.  At the indicated time point, 

cells were lifted from cell culture plastic using Versene solution (Thermo Fisher 

Scientific) and then washed in PBS + 2% FBS, fixed with 4% paraformaldehyde for 10 

minutes, washed two times with PBS + 2% FBS, and then permeabilized with 0.2% triton 

X 100 in PBS. Cells were then stained for transgene expression using an anti-ovalbumin 

FITC (Abcam) diluted 1:50 in PBS with 2% FBS and 0.1% triton X 100 for 30 minutes at 

4C.  Cells were then washed two times with PBS + 2% FBS and 0.1% triton X 100 and 

then analyzed using the BD Accuri C6 Cytometer.  Samples were gated to remove 

debris and doublets and then gated to demarcate the FITC+ population.   
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4.2.8 Mouse Injection  

 Female BALB/c mice (Charles River, Wilmington, MA) were anesthetized with 

2.5% isoflurane and then injected in the anterior tibialis with 40µl of indicated treatment 

(10 µg of IVT mRNA and/or 3.14 ng CL264) diluted in RiLa using a 29-gauge needle. 

Mice were housed and manipulated under specific-pathogen-free conditions in the 

animal care facilities of Georgia Institute of Technology. All experiments were in 

accordance with the Institutional Animal Care and Use Committee.  

4.2.9 RT-qPCR on mouse muscle tissue 

IVT mRNA was injected into the anterior tibialis muscle. Five hours later, the 

muscle was removed and stored in RNAlater (Thermo Fisher Scientific) overnight at 4C.  

The following day, tissue was homogenized using the Bullet Blender and Navy RNAse 

free Stainless Steel Beads (Next Advance) in the presence of 1ml of Trizol (Thermo 

Fisher Scientific).  The samples were extracted with chloroform and then bound to an 

RNEasy column (QIAGEN) following the addition of an equivalent volume of ethanol.  

The samples were further purified according to the RNEasy kit's instructions, which 

included an on-column DNAse digestion.  RNA content was determined by A260 

absorbance using the Nanodrop 2000, (Thermo Fisher) and quality was checked using 

RNA gel electrophoresis.  Extracted RNA (1 µg) was converted to cDNA using the RT2 

PreAMP pathway primer mix (QIAGEN) according to the manufacturer's directions.  

qPCR was conducted using the Fluidigm system and the mouse antiviral response PCR 

primer array (QIAGEN) according to the manufacturer's directions with technical 

duplicates.  Five mice were analyzed per treatment condition.  QIAGEN’s online data 

analysis center was used for data analysis.  Statistical significance was based on a 

Student’s t-test of the replicate 2-ΔCT values for each gene in the control group and 

treatment groups.  The reference genes Gusb, Gapdh, Hsp90ab1, and ActB were used 
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to normalize expression.  Heat maps for gene expression were generated in JMP using 

the multivariate clustering tool.   

4.3 Results 

4.3.1 Effects of modified base substitution in IVT mRNA 

 It was established in Chapter 2 of the thesis that incorporation of modified bases 

can reduce the self-adjuvant properties of IVT mRNA.  Pseudouridine (Ψ) and N1-

Methylpseudouridine (M1Y) have both been identified as modified bases that reduce the 

interferon responses to IVT mRNA.  We compared how incorporation of each of these 

bases in ovalbumin-encoding IVT mRNA affected immunostimulation as well as 

ovalbumin protein levels.   

 To do this, RAW 264.7 macrophages were transfected using Lipofectamine 2000 

with ovalbumin mRNA either composed of unmodified bases or substituting Ψ or M1Y 

for uridine.  Five hours after transfection, total RNA was collected from the cells, and 

gene expression was analyzed using a mouse antiviral PCR array, as shown in Figure 

4.3.  The greatest amount of antiviral responses were detected in response to IVT 

mRNA composed of unmodified bases followed by IVT mRNA substituting 

pseudouridine, and then IVT mRNA substituting M1Y.  Flow cytometry was used to 

assess ovalbumin protein expression following transfection.  As shown in Figure 4.4, 

substitution of M1Y leads to an increased percentage of transfected cells, as well as an 

increased intensity of ovalbumin staining for the cells that were transfected.   

 
 
 

http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=6705
http://www.trilinkbiotech.com/cart/Scripts/prodView.asp?idproduct=6705
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Figure 4.3 Gene expression of RAW264.7 cells following transfection with 
ovalbumin IVT mRNA incorporation the modified base pseudouridine or M1Y.  (A) 
Heat map of gene expression relative to cells treated with Lipofectamine only (L2K 
control).  (B). Fold increase of interferon alpha 2 (Ifna2), interferon alpha receptor 1 
(Ifnar1), and interferon-beta 1 (Ifnb1) in response to transfection with IVT mRNA 
composed of the indicated nucleobases. (C) Fold increase of inerleukin-15 (Il15), 
Ubiquitin-Like Modifier (Isg15), and MX Dynamin-Like GTPase 1 (Mx1). 95% confidence 
intervals are shown.  * indicates significantly different from L2K control.   
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Figure 4.4 Effect of modified base incorporation on IVT mRNA protein expression. 
RAW 264.7 cells were transfected with mRNA composed of the indicated bases.  Five or 
20 hours following transfection, cells were stained for ovalbumin protein content and 
analyzed with flow cytometry.  As shown in (A), M1Y incorporation into IVT mRNA leads 
to a higher percentage of cells transfected.  (B) Shows that M1Y incorporation also lead 
to an increased intensity of ovalbumin staining compared to other IVT mRNA constructs. 
Error bars show standard deviation across three groups. * Indicated significantly different 
from all other groups for the given time condition (p<0.05, Tukey's test).  
 
 
 

4.3.2 Adjuvants tethered to IVT mRNA affect innate immune 

stimulation 

We next investigated the efficiency of biotinylated molecules to be tethered to 

IVT mRNA of different chemistries.  Neutravidin bound oligonucleotides targeting the 3' 

UTR of the IVT mRNA were prepared.  Following, a biotinylated fluorescent dye was 

incubated with the oligonucleotides in place of an immunostimulatory molecule.  The 

now fluorescently labeled oligonucleotides were allowed to anneal to the IVT mRNA 

overnight. The sample was purified using filtration (200,000 MWCO), and then the 

overall fluorescence and 260 absorbance of the sample were determined.  We found 

that approximately 3-4 fluorescent molecules were bound to an IVT mRNA on average 

and that RNA chemistry did not significantly affect binding.   

 IVT bearing the TLR7 adjuvant CL264 was then prepared.  RAW264.7 

macrophages were transfected with IVT mRNA with CL264 delivered tethered to the IVT 
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mRNA or as a cocktail solution.  As a control for any error in purification techniques, a 

mock reaction control was also prepared.  Here, the procedure for preparing CL264 

tethered IVT mRNA was followed; however, IVT mRNA was omitted from the 

preparation.  The resulting solution was then mixed with IVT mRNA prior to cell 

transfection.  We also prepared a cocktail solution of IVT mRNA and CL264 adjuvant, 

which were also delivered with Lipofectamine-2000.  Five hours following transfection, 

cellular mRNA was collected and analyzed using RT-qPCR.  Figure 4.5 shows IFNβ1 

and IL-1β cytokine levels following transfection.  Tethering CL264 agonist to IVT mRNA 

yields increased cellular immune responses.   

 

 

 
Figure 4.5 Effect of tethering the TLR7 adjuvant CL264 to IVT mRNA. RAW264.7 
cells were transfected with ovalbumin IVT mRNA using Lipofectamine 2000.  Five hours 
later, cellular responses were assayed using RT-qPCR.  Where (A) shows that IFNβ1 
are moderately increased where cells are transfected with ovalbumin IVT mRNA, (B) 
shows that IL-1β are significantly increased where IVT mRNA bearing CL264 is 
transfected compared to IVT mRNA alone.  Fold change calculated in reference to β-
Actin.  Error bars show 95% confidence intervals. * Indicates significantly different 
(p<0.05, Tukey's test).   
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Figure 4.6. Protein expression of IVT mRNA delivered with and without tethered 
agonist.  RAW 264.7 cells were transfected with ovalbumin M1Y mRNA alone or with 
the CL264 adjuvant.  Five or 20 hours following transfection, cells were stained for 
ovalbumin protein content and analyzed with flow cytometry.  As shown in (A), IVT 
mRNA co-delivery with CL264 leads to a higher percentage of cells transfected.  (B) 
Shows that M1Y incorporation also lead to an increased intensity of ovalbumin staining 
compared to other IVT mRNA constructs. Error bars show standard deviation across 
three groups.  
 
 
 

 It is important that tethering an adjuvant to IVT mRNA still allows for protein 

translation.  To assess if tethering an adjuvant to IVT mRNA affects protein expression, 

RAW264.7 cells were transfected with IVT mRNA with or without tethered adjuvant, and 

then protein content was assessed with flow cytometry.  Figure 4.6 shows that tethering 

an adjuvant to IVT mRNA does not appreciably affect transgene production.  While the 

result is not statistically significant, there is a noticeable trend that CL264 co-delivery 

leads to increased protein production.   

 We also compared how the incorporation of modified bases may affect cellular 

responses in response to CL264 tethered IVT mRNA.  Figure 4.7 shows IVT mRNA 

composed of all unmodified bases, or the modified bases pseudouridine or m1Y. While 

unmodified mRNA leads to increased Il-1βresponses compared to m1Y mRNA, the 

difference is dramatically increased when CL264 is tethered to the mRNA.  This 
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suggests that there may be some synergistic innate immune responses to unmodified 

mRNA with tethered Cl264.   

 
 

 
Figure 4.7.  Effect of modified bases on immune response to CL264-tethered IVT 
mRNA.  Fold change calculated in reference to β-Actin.  Error bars show 95% 
confidence intervals. * Indicates significantly different (p<0.05, Tukey's test).   
 
 
 

4.3.3 Tethering the cell membrane TLR2 adjuvant PAM2CSK4 to 

IVT mRNA 

Studies in Chapter 3 of this thesis, as well as other studies done in the 

Santangelo lab, show that a significant portion of IVT mRNA is trapped inside cellular 

endosomal compartments.  As TLR7 is active in the endosome, tethering CL264 to IVT 

mRNA is likely to interact with TLR7.  We wanted to assess if tethering an adjuvant that 

is recognized by a membrane-bound PRR would also be functional.  To do so, the TLR2 

adjuvant PAM2CSK was tethered to IVT mRNA and then transfected into cells.  Figure 

4.8 shows that this adjuvant is indeed able to interact with its receptor when tethered to 
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IVT mRNA.  Interestingly, when the adjuvant seems to be more active when it is tethered 

to IVT mRNA, than when it is delivered as a cocktail.   

 

 

 
Figure 4.8. Effect of tethering the TLR2 adjuvant Pam2CSK4 to IVT mRNA.  Fold 
change calculated in reference to β-Actin. Error bars show 95% confidence intervals. * 
Indicates significantly different (p<0.05, Tukey's test). 
 
 
 

4.3.4 Effects of tethering agonist to IVT mRNA vs cocktail delivery 

following intramuscular injection  

We next wanted to assess the functionality of our IVT mRNA construct following 

injection in vivo. We hypothesized that agonist tethered IVT mRNA would lead to 

stronger antiviral immune responses in the muscle compared to a cocktail of IVT mRNA 

and the agonist following injection.  To test this hypothesis, M1Y modified IVT mRNA 



www.manaraa.com

88 
 

was injected intramuscularly either tethered TLR7 agonist (CL264) or the TLR7 agonist 

delivered with mRNA as a cocktail.  M1Y mRNA and CL264 each injected alone were 

also used as controls.  Five hours following injection, the muscle was removed and 

processed for analysis via a mouse antiviral PCR array.  Genes included in the PCR 

array are shown in Table 4.1.   

 
 
Table 4.1 Genes assessed with PCR assay 

Toll-Like Receptor Signaling:  

Receptors and Chaperones:  
Cnpy3, Ctsb, Ctsl, Ctss, Tlr3, Tlr7, Tlr8, Tlr9. 
Downstream Signaling:  
Chuk (Ikka), Fos, Ikbkb, Irak1, Irf3, Irf5, Irf7, Jun, Map2k1 (Mek1), Map2k3 
(Mek3), Map3k7 (Tak1), Mapk1 (Erk2), Mapk14 (p38 Mapk), Mapk3 (Erk1), 
Mapk8 (Jnk1), Myd88, Nfkb1, Nfkbia (Ikba/Mad3), Rela, Ripk1, Spp1, Tbk1, 
Ticam1 (Trif), Tnf, Traf3, Traf6. 
Responsive Genes:  
Ccl3 (Mip-1a), Ccl4 (Mip-1b), Ccl5 (Rantes), Cd40 (Tnfrsf5), Cd80, Cd86, 
Cxcl10 (Inp10), Cxcl11 (I-TAC/IP-9), Cxcl9 (Mig), Ifna2, Ifnb1, Il12a, Il12b, Il15, 
Il1b, Il6. 
Nod-Like Receptor Signaling: 

Receptors and Signaling:  
Aim2, Card9, Casp1 (Ice), Hsp90aa1, Mefv, Nlrp3, Nod2, Oas2, Pstpip1, 
Pycard (Tms1/Asc), Sugt1, Tank, Tbkbp1. 
Responsive Genes:  
Il1b, Il18. 
RIG-I-Like Receptor Signaling:  

Receptors and Chaperones:  
Cyld, Dak, Ddx58 (RIG-I), Dhx58 (Lgp2), Ifih1 (Mda5), Isg15 (G1p2), Trim25. 
Downstream Signaling:  
Atg5, Atg12, Azi2, Casp8 (Flice), Chuk (Ikka), Ddx3x, Fadd, Ikbkb, Irf3, Irf7, 
Map3k1 (Mekk1), Map3k7 (Tak1), Mapk14 (p38 Mapk), Mapk8 (Jnk1), Mavs, 
Nfkb1, Nfkbia, Pin1, Rela, Ripk1, Tbk1, Tnf, Tradd, Traf3, Traf6. 
Responsive Genes:  
Cxcl10 (Inp10), Ifna2, Ifnb1, Il12a, Il12b. 
Type-I-Interferon Signaling and Response: 

Signaling Pathway:  
Ifna2, Ifnar1, Ifnb1, Stat1.  
Interferon-Stimulated Genes (ISGs): 
 Il15, Isg15 (G1p2), Mx1, Tlr3. 
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A heat map of the gene expression is shown in Figure 4.9. Figure 4.10 shows 

gene expression following injection with CL264 alone and M1Y ovalbumin mRNA alone 

relative to the sham injection control. To understand how co-delivery of the TLR7 agonist 

CL264 affected the local environment, normalized expression of mRNA delivered with 

CL264 is plotted against normalized gene expression of following M1Y mRNA alone 

(Figure 4.11).  We see that a cocktail delivery of IVT mRNA with Cl264 agonist leads to 

a modest change in gene expression compared to IVT mRNA delivered alone. When 

IVT mRNA is delivered with CL264 tethered, there are more pronounced changed in 

gene expression.  In Figure 4.11, nearly all of the genes (except for NLRP3, Pstp1, and 

Mefv) that show more than a threefold regulation change over the M1y mRNA treatment 

group are involved in Toll-like receptor signaling.  Expression levels for TLR responsive 

genes that show more than a threefold increase in Figure 4.11 are shown in Figure 4.12.  

Tethered delivery of mRNA and CL264 consistently shows greater changes in gene 

expression levels compared to cocktail delivery for these genes.   
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Figure 4.9. Heat map showing fold change of gene expression over a sham 
injection control in response to intramuscular injection with the indicated 
treatment.  Five mice per group were injected intramuscularly in the anterior tibialis with 
the indicated treatment.  Five hours following injection, the muscle was removed and 
analyzed for expression of the indicated genes. 
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Figure 4.10. Gene expression in the muscle after injection with CL264 or IVT 
mRNA. (A) CL264 delivered alone and (B) M1Y mRNA delivered alone plotted against 
normalized expression of the sham injection control.  Dashed lines indicate a fold 
regulation cut-off of 3.  Genes listed indicate those that are 3-fold over or under 
expressed compared to the sham injection control.  * indicates the difference in gene 
expression is statistically significant (student T’s test, p<0.05).  
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Figure 4.11. Gene expression after injection of IVT mRNA with CL264. (A) 
ovalbumin M1Y mRNA and CL264 delivered as a cocktail and (B) CL264 tethered to 
ovalbumin M1Y mRNA delivered against ovalbumin M1Y alone.  Dashed lines indicate a 
fold regulation cut-off of 3.  Genes listed indicate those that are 3-fold over or under 
expressed compared to the M1Y mRNA injection control.  * indicates the difference in 
gene expression is statistically significant from M1Y mRNA only; + indicates gene 
expression is significantly different between Cl264 tethered to M1y mRNA compared 
CL264 delivered as a cocktail with mRNA (student t’s test, p<0.05).  
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Figure 4.12 Gene expression of toll-like receptor responsive genes with more than 
a threefold increase in Figure 4.11.  Each data point represents the expression levels 
from an individual animal. 
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4.4 Conclusion 
 This chapter outlines a methodology for the development of IVT mRNA with 

controllable adjuvant properties.  Agonists targeting a variety of PRRs can be tethered to 

IVT mRNA to enhance its immunostimulatory properties. We showed that agonists 

tethered to IVT mRNA can functionally target either endosomal or cell membrane bound 

PRRs.  The ability to target membrane bound receptors was tested using an adjuvant 

against TLR2.  As shown in Figure 4.8, the tethered agonist condition leads to 

significantly increased cytokine responses compared to agonist delivered as a cocktail.  

This could possibly be because TLR2’s activation is dependent upon dimer formation 

(165).  Perhaps tethering TLR2 to IVT mRNA allowed for enhanced dimerization and 

thus activation.  

 This chapter also showed that upon i.m. injection, tethered IVT mRNA-agonist 

delivery enhances immune responses compared to cocktail delivery.  We hypothesize 

that tethering the low molecular weight agonist to IVT mRNA enhances retention in the 

muscle and increases localization in the endosomal compartments.  Previous studies 

have shown that imiquimod, another low molecular weight TLR7 agonist, is rapidly 

cleared following intramuscular injection.  It has been shown to be ineffective as a co-

delivered agonist for vaccination purposes (165).  

 This strategy enables comparisons between IVT mRNA vaccines that stimulate 

different PRRs.  Further, this approach could also enable the delivery of other molecules 

that could affect IVT mRNA performance. Cell targeting peptides or cell penetrating 

peptides could be tethered to IVT mRNA to enhance intracellular uptake of IVT mRNA. 
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CHAPTER 5 

PERSPECTIVES AND FUTURE DIRECTIONS 

This thesis investigated innate immune responses to IVT mRNA and identified 

strategies to modulate these responses.  Chapter 2 demonstrates that the substitution of 

modified bases in IVT mRNA alters the activation of antiviral sensors and also influences 

transgene protein expression in a gene-dependent manner. Chapter 3 identifies specific 

PRRs that interact with IVT mRNA. This chapter highlights the use of PLAs for studying 

PRR activation, further demonstrating that PRR activation could be modulated by 

nanoparticle-mediated delivery of IVT mRNA.  Chapter 4 presents a strategy for 

tethering adjuvants to IVT mRNA, allowing for the controllable activation of PRRs. In this 

section, future directions for this work are discussed.  The prospects for IVT mRNA 

vaccines and suggest general directions for future research and development. 

5.1 Dendritic cell response to nucleic acid transfection  
Other researchers have shown that modified bases, particularly 5mC and Ψ, 

reduce antiviral responses and increase transgene protein production of IVT mRNA (35).  

Chapter 2 illustrates that this observation does not hold true across all gene sequences.  

The protein expression of Ara h 2 IVT mRNA was higher when unmodified bases were 

incorporated but lower when 5mC and Ψ were used.  On the contrary, transgene 

expression of ovalbumin IVT mRNA was higher when 5mC and Ψ were used but lower 

when composed of all unmodified bases.   

This study presents multiple questions for future work: 

• Can codon optimization be used to modulate the impact of modified 

bases on transgene protein production and antiviral responses? 



www.manaraa.com

96 
 

• Do modified bases introduce codons that are difficult to translate (i.e., 

ineffective transfer RNA recognition of codon)? 

• Is the secondary structure of 5mC/Ψ IVT mRNA altered such that protein 

translation is affected? 

• Do modified bases in IVT mRNA affect PRR recognition in a sequence 

dependent manner? 

• Do modified bases selectively impact transgene expression of secreted 

(e.g., Ara h 2) versus cytoplasmic proteins (e.g., ovalbumin)?  

 This chapter also compares the ability of IVT mRNA and plasmid DNA to 

induce BMDC maturation.  IVT mRNA is largely regarded as more immunostimulatory 

than plasmid DNA, yet plasmid DNA induced BMDC maturation events and IVT mRNA 

did not.  Chapter 2 explores the maturation of dendritic cells in vitro, thus presenting a 

limited picture of the actual immunostimulatory responses to each nucleic acid.  Further, 

BMDCs are not fully representative of the complex phenotypes and characteristics of 

dendritic cells found in vivo (166).  Moreover, dendritic cells are known to interact with a 

wide variety of cell types, which can influence their PRR expression levels, maturation, 

and other processes (167).  In vitro studies do not account for these interactions, limiting 

implications of the findings.  However, the study of BMDC maturation suggests an 

avenue to improve IVT mRNA vaccine design.  IVT mRNA co-delivery with an adjuvant 

may enhance the development of adaptive immunity.   

Surprisingly, TLR7+and TLR7- cells had comparable NFКB responses to IVT 

mRNA transfection.  This is interesting for several reasons.  At least two other studies 

(65, 127) use the same cell line to find the opposite results.  Also, our proximity ligation 

assays performed in Chapter 3 show that TLR7 is activated by IVT mRNA.  Another 

study shows that IVT mRNA activates TLR7 in dendritic cells only when it is complexed 
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to protamine (68).  Overall, there is substantial conflicting evidence on IVT mRNA 

activation of TLR7.  One possible explanation is that TLR7 signal propagation is 

mediated by other factors.  Perhaps a factor present in cell culture serum is required to 

enable TLR7 activation either by providing or upregulating a critical accessory molecule.  

Here, we are reminded of the extreme complexity of the innate immune system. 

Responses to pathogens are regulated on many different levels: multiple cell types, 

PRR, accessory proteins, and cytokines adjust each other's activity to develop a 

response. For example, TLR7, TLR8, and TLR9 all regulate each other's activity.(168, 

169).    

In light of this, we hypothesized that cell culture systems may not be appropriate 

for studying PRR activity. Moreover, knock-in and knock-out systems have the capacity 

to skew results.  Therefore, we were motivated to develop a method that would allow for 

assessing PRR activity in vivo without perturbing the expression level of PRRs.  These 

methods and their findings are described in Chapter 3. 

5.2 In situ analysis of mRNA vaccine  

 In this chapter, we demonstrated the use of proximity ligation assays for 

detecting specific PRR activation.  Using PLAs, we showed that cholk nanoparticle-

mediated delivery of IVT mRNA affected PRR activation.  The nanoparticle formulation 

reduced TLR7 and enhanced RIG-I and MDA5 activation.  We also showed that 

nanoparticle-mediated delivery enhanced infiltration of immune cells to the injection site.  

We hypothesize this is due to increasing the size of IVT mRNA (by delivering it in a 300 

nm particle), which enhanced its retention in the muscle. Thus, nanoparticle-mediated 

delivery led to a more localized distribution of IVT mRNA in the muscle.  This may have 

enhanced infiltration of immune cells to the injection site. 
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 PLA detection of PRR activation is a unique tool for probing innate immune 

responses.  This technique is especially powerful for studying PRR activation when 

multiple receptors are expected to simultaneously be activated.  While animal or cell 

systems that up or down regulate receptor levels are important to assess functional 

contributions of a PRR to the developed immune responses, they can mask the 

importance of other contributing PRRs that act in concert with the receptor being 

investigated.  As researchers continue to explore strategies to modulate innate immune 

responses to IVT mRNA and other vaccines, PLAs offer insight on the impact these 

strategies have on PRR activation.  This technique of innate immune surveillance may 

enable more understanding of IVT mRNA's interaction with innate immunity. Future work 

should use PLAs to determine how codon optimization and modified bases influence 

PRR activation.  Also, can different genes expect to activate PRRs in the same way? 

Moreover, PLAs could be developed for studying IVT mRNA activation of other PRRs 

such as PKR and TLR3. 

 While we showed that nanoparticle-mediated delivery of IVT mRNA affected 

innate immune activation, adaptive immune responses were not investigated.  Future 

work should focus on understanding how the nature of innate immune activation and 

transgene protein production by IVT mRNA affects the development of adaptive immune 

responses.   Future directions could also focus on developing relationships between the 

measurement of the specific innate immune response elements presented in this 

chapter (such as immune cell infiltration to injection site, PRR activation, and lymph 

node trafficking) and adaptive immune responses.  Could PRR activation levels, as 

detected through PLAs, be used as predictive measures of a vaccine’s success?   

 The data collected from PLAs for assessing PRR activation is limited in several 

regards.  First, activity levels of two different PRRs cannot be compared, as antibody 

binding and proximity ligation are not always 100% efficient.  Second, optimization of 
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assay conditions along with data collection and analysis are time consuming methods.  

Proximity ligation assays require several antibody binding and enzymatic steps that can 

be costly and time-consuming for a large number of samples.  Analysis of the assay 

involves counting individual puncta per volume of tissue or per individual cell. This work 

was highly enabled by the use of an UltraVIEW spinning disk confocal microscope in the 

Santangelo lab.  PLA analysis of tissue requires confocal microscopy with at least 40x 

magnification.  As many images may be required to quantify PRR activity (at least 360 

images were collected in this study for each PRR), the speed of image acquisition 

significantly impacts the ease of data collection.  Researchers without access to imaging 

modalities with similar capabilities would face extreme handicap in collecting similar data 

sets.  Efforts to develop a more high-throughput method for detecting PRR signaling 

complexes could enhance practicality of these experiments and facilitate future work.  

For example, developing methods for flow cytometric analysis would enable larger data 

sets to be analyzed.  

5.3 IVT mRNA with programmable innate immune stimulation 

 This chapter outlines a strategy for directed control of innate immune responses 

by IVT mRNA.  This work showed that PRR agonists tethered to IVT mRNA can activate 

PRRs without compromising IVT mRNA transgene protein production.  Previously, 

researchers were only able to tune IVT mRNA characteristics by tweaking the molecule 

itself (e.g. substituting modified bases or altering the genetic sequence).  This work 

enables altering IVT mRNA characteristics on a more significant scale to allow for more 

transformations of IVT mRNA's interaction with innate immunity. 

 Tethering adjuvants to IVT mRNA relies on the specific binding of a 

complementary oligonucleotide to IVT mRNA.  Not every oligonucleotide binding site on 

the IVT mRNA was filled. While four oligonucleotides were designed to bind to each IVT 
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mRNA molecule, we found that on average, only one oligonucleotide molecule bearing 4 

adjuvant molecules was bound to each IVT mRNA molecule.  This technology could be 

improved through further research investigating the probe binding efficiency to IVT 

mRNA.  Future directions could optimize probe sequence (length and binding region) as 

well as the spacing between oligonucleotide binding regions to enhance agonist 

tethering to IVT mRNA.  Additionally, Neutravidin is conjugated to the oligonucleotide, 

and biotinylated agonists are bound to the Neutravidin.  This protein complex may 

sterically interfere with oligonucleotide binding to IVT mRNA.  Future work should 

investigate if an alternate conjugation strategy could improve binding.   

 Other molecules aside from PRR agonists could also be tethered to IVT mRNA.  

For example, ligands targeting certain cell types could direct entry into dendritic cells or 

liver cells.  Additionally, molecules that affect transgene protein could also be tethered, 

such as translation factors.  Moreover, cytokines, chemokines, or transcription factors 

could also be conjugated to IVT mRNA to modulate the immune responses.   

 Why should molecules be tethered to IVT mRNA, rather than delivered in a 

cocktail or combined in a nanoparticle formulation? Work presented in Chapter 4 shows 

how a TLR7 agonist to tethered IVT mRNA leads to more potent innate immune 

stimulation than cocktail delivery.  Many PRR agonists are low molecular weight 

molecules that are quickly cleared from the muscle after injection (170, 171).  Tethering 

these agonists to IVT mRNA molecules likely enhances their retention in the muscle.  

Moreover, when an endosomally active molecule such as CL264 is used, tethering it to 

IVT mRNA likely enhances its localization in endosomal compartments.  When the 

extracellularly-active TLR2 agonist was bound to IVT mRNA, its activity was amplified 

compared to non-tethered delivery.  This may be because this agonist dimerizes in order 

to activate TLR2.  Thus, tethered adjuvant may have facilitated dimerization, enhancing 

activity.   
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 As an alternative to tethered IVT mRNA delivery, nanoparticle-mediated delivery 

may also co-deliver adjuvant and IVT mRNA.  Nanoparticle co-delivery may also 

enhance retention of adjuvants in the muscle by facilitating intracellular uptake and 

increasing the effective size of the adjuvant.  As shown in Chapter 3, nanoparticle 

mediated delivery can also affect PRR activation of IVT mRNA and modulate other 

innate immune responses.  However, while researched have developed a multitude of 

nanoparticle formulations to enhance nucleic acid delivery, it is unclear if nanoparticle-

mediated delivery is advantageous over naked IVT mRNA delivery.  Tethering adjuvants 

to IVT mRNA still allows for nanoparticle-mediated delivery, but does not rely on a 

technology that may be inessential.  Thus, co-delivery of adjuvants by tethering them to 

IVT RNA allows for flexibility in vaccine design.  This is notable, as IVT mRNA vaccines 

are in their infancy.  Future directions should focus on determining what adjuvants are 

most useful for specific vaccine candidates.   

5.4 Perspective 
Several pre-clinical studies indicate that IVT mRNA could be an effective 

vaccination medium (20, 164, 172). While clinical success of IVT mRNA remains to be 

seen, there is significant design space to modulate the characteristics of IVT mRNA for a 

given application.  This thesis identifies several design variables that modulate IVT 

mRNA characteristics and functionality.  The impact of these strategies alludes to the 

sensitivity of PRR-ligand recognition, and unexplored possible strategies to further 

modulate innate immune responses to IVT mRNA.  

 Collectively, the design of IVT mRNA molecules affect both its characteristics 

and functionality.  For example, two sequences encoding the same gene with different 

codon usage will have very different IVT mRNA characteristics.  The secondary 

structures and nucleobase percentages will differ.  As a result, the two sequences may 
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be recognized differently by PRRs.  Codon usage and PRR activation also influence 

transgene protein expression.  The full impact is unclear that a collective grouping of 

design criteria has on IVT mRNA characteristics.  Future studies that focus on how these 

design criteria modulate characteristics and functionality would enable more thoughtful 

and rational design of IVT mRNA constructs. 

 

 

 
 
Figure 5.1. Design variables can modulate IVT mRNA characteristics and 
functionality.  IVT mRNA design variables affect characteristics and functionality.  The 
mechanisms regarding how consummate design criteria impact characteristics and 
functionality are unknown, a hurdle to rational design of IVT mRNA molecules. 
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Endogenous RNAs are nearly always exist in ribonucleoprotein complexes, likely 

reducing their interactions with antiviral PRRs.  As IVT mRNA is delivered devoid of any 

bound proteins likely explains the activation of PRRs detecting cytoplasmic dsRNA.  

Strategies to shield recognition of IVT mRNA, either by reducing secondary structure 

through sequence engineering or alternative strategies could improve protein production.  

To mimic endogenous RNAs, small proteins or other molecules could be bound to IVT 

mRNA to reduce interactions with PRRs.  In fact, modified bases are well-established to 

affect secondary structure of endogenous RNAs, and reduction of secondary structure 

could be the mechanism of modulating PRR recognition (72, 73).   

Throughout this thesis work, as well as through other studies performed in the 

Santangelo lab, it is evident that IVT mRNA characteristics and functionality have 

sequence-to-sequence variation.  As demonstrated in Chapter 2, substitution of modified 

bases enhance functionality of some sequences while impairing others.  A systems-

based approach to identify sequence design criteria, probing codon choice, gene 

characteristics, and substitution of modified bases would be warranted.  This 

methodology could identify sequence motifs important for PRR activation or specific 

codons where modified bases impact translation rates.  

One of the ultimate goals for IVT mRNA is the rapid manufacturing of vaccines in 

the case of an epidemic or other biological threats.  To make progress toward this goal, 

future efforts could compare IVT mRNA vaccines with extant vaccines that are known to 

be effective.  Very practical exercises could provide benchmarks for IVT mRNA 

performance.  Important questions to answer include: 

• What level of transgene antigenic protein is required?   

• Do the kinetics of transgene antigenic protein production compare 

favorably to those in a vaccination?  

• Does biodistribution vary between extant vaccines and IVT mRNA? 
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• Does biodistribution vary between extant vaccines and IVT mRNA of the 

antigenic protein?   

• How do the characteristics (i.e., specific PRR activation, immune cell 

infiltration, lymph node uptake) of innate immunity differ?  

• How do the characteristics of adaptive immunity differ?   

To answer these questions, the innate immune responses to IVT mRNA vaccines 

could be compared to extant vaccines using PLAs, along with other methods, as 

described in Chapter 3.  Based on the findings, IVT mRNA's interaction with the innate 

immune system could be engineered to mimic effective vaccines by tethering adjuvants 

or introducing modified bases described in Chapters 2 and 4.   

Preclinical animal studies using DNA vaccines produced compelling evidence 

demonstrating their efficacy; however, clinical trials yielded surprisingly low 

immunological responses.  While rodent models are practical for preliminary studies, 

there are significant limitations when translating the findings to humans that should be 

acknowledged.  First, muscle sizes are different in rodents and humans, impacting 

retention time of i.m. delivered vaccine. The ratio of injection volume to muscle volume is 

also different in mouse models and humans, influencing vaccine retention time, entry 

into the lymphatics, systemic distribution, and localization of innate immune responses.  

Moreover, the innate immune systems differ between humans and mice, limiting the 

carryover of conclusions from mouse models (173).  For instance, human and murine 

TL7 and TLR8 have variable specificity to certain ligands (136). Additionally, many 

inbred mouse strains have genetic abnormalities within the innate immune system that 

may augment or diminish innate immune responses (174, 175).   

IVT mRNA is a unique tool for driving transient protein production.  While this 

thesis focused on the production of antigenic protein for vaccination purposes, IVT 

mRNA can also be used for synthesis of therapeutic proteins.  This approach would 
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enable faster, cost effective therapeutics compared to traditional protein manufacturing 

methods.  Additionally, post-translational modifications of therapeutic proteins will be 

true-to-host, a nontrivial challenge for proteins manufactured in non-mammalian 

systems.  Studying innate immune responses to IVT mRNA is important to further 

therapeutic applications.  Activation of PKR and OAS-L, which impedes protein 

translation degrade intracellular RNAs respectively could dramatically impact transgene 

protein production and are significant hurdles to therapeutic applications.   
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APPENDIX A 
STATISTICAL ANALYSIS OF PROXIMITY LIGATION ASSAYS 

 
 
 

A.1. Statistical model to evaluate data from proximity 
ligation assays 
 

Dr. Brani Vidakovic is acknowledged for his assistance and consultation for the work 

presented in Appendix A. The following describes the building of a statistical model to 

evaluate the data collected from the proximity ligation assays performed in Chapter 3. A 

model was built to fully match the experimental design and describe the data collected 

from each proximity ligation assay (PLA). The model is described as:  

yijkl =   

Where: 
yijkl = normally distributed data collected from MDA5, TLR7 or RIGI.  

 µ = mean of the data 
αi = contribution from treatment condition  

 βj = contribution from time condition  
 αβij =contribution from any interaction between treatment and time condition 
 ɣk(ij) = contribution from individual animal tested, nested in treatment and time 
 ϵijkl  = contributions from error  

 i = mRNA alone, mRNA+cholk, sham, isotype controls, 
 j = 1.5, 6, 16 hours 
 k = individual animal tested (1:4)  
 l = image taken (1:6) 

  
 We aimed to test the following hypotheses to determine if the treatment, time 

point, interaction between the treatment and time, and individual animal nested in 

treatment and time were significant factors in the data collected. These hypotheses are 

described as:  

Ho: αi = 0  
Ho: βj = 0   
Ho: ɣk(ij) = 0   
Ho:  αβij =0 
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A.2. Data from proximity ligation assays do not follow a 
normal distribution 

 
The data were analyzed to determine if they followed normal distributions before 

performing an analysis of variance (ANOVA), which assumes a normal distributions of 

data.  In the experimental design, this normality is expected from the model residuals. 

The residuals were calculated for each PLA experiment using MATLAB, and are 

presented in Figure A.1. 

 

 

Figure A.1. Histograms of residuals from data of (A) TLR7, (B) MDA5, and (C) RIG-I 
PLAs. The ``fat’’ tails and excessive kurtosis indicate that the distributions deviate from 
normality. 
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The residuals in Figure A.1 show a skewness to the right as well as a positive 

kurtosis reflecting a non-normal distribution.  To further visualize if the data followed a 

normal distribution, q-q plots were formed (Figure A.2).  The MATLAB function ‘qqplot’ 

was used to plot the empirical quantiles of the experimental data against the normal 

quantiles. A perfect normal distribution would show the blue data points collapsing on 

the red dotted line; however, the data shows an ‘S’ shape, which is the evidence that the 

experimental data does not conform to normality.  Together, the q-q plots and residual 

plots shown in Figures A.1 and A.2 show that the distribution of the residuals is right 

skewed, heavy tailed, and with a positive kurtosis.   

 

 
Figure A.2. q-q plots from data from (A) TLR7, (B) MDA5, and (C) RIG-I proximity 
ligation assays. 
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A.3. Transformation of proximity ligation data to meet 

normal distribution 

 To determine how well the data could be transformed to normality, we tested 

transforming the data points by raising to the exponent ‘q’, where q varied in steps of 

0.01 from 0.01 to 0.5.  The Jarque-Bera statistic (JB) was calculated for each q value as 

a measure of discrepancy from normality.  The JB statistic describes how well 

experimental data fits skewness and kurtosis, two important aspects of the  normal 

distribution.  JB is defined as: 

 
Where:  

n is the sample size,  
S is the sample skewness,  
C is the sample kurtosis.   
 
S and C were calculated by MATLAB's statistical toolbox using 'skewness' and 

'kurtosis' commands.  Figure A.3 shows the JB statistic calculated for each q value for 

each PLA.  We see that the JB statistic reaches a value very close to zero approximately 

where q = 0.28 for TLR7, q= 0.33 for MDA5 and q= 0.35 for RIG-I.   
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Figure A.3. Calculated JB statistic for each q value from PLAs for (A) TLR7 (B) 
MDA5 and (C) RIG-I.   
 
 

To treat all of the collected data equally, we took the cubed root of the collected data 

points for each PRR PLA. Residual plots and q-qplots were generated on the 

transformed data to qualitatively determine if they followed normal distributions.  

Residuals plots and q-qplots are shown in Figures A.4 and A.5, respectively.  The 

Jarques-Bera test was also performed on the transformed data to test if it followed a 

normal distribution.   
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Figure A.4. Histograms of residual plots from data from PLAs of (A) TLR7, (B) 
MDA5, and (C) RIG-I.  Data is transformed by taking the cubed root.   
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Figure A.5. q-q plots from data from PLAs of (A) TLR7, (B) MDA5, and (C) RIG-I.  
Data is transformed by taking the cubed root.   
 
 
 Figures A.4 and A.5 show that the transformed data now better approximates a 

normal distribution.  Inspection of the function y=x1/3
, which is shown in Figure A.6, 

demonstrates why this transformation makes the collected data better fit a Gaussian 

distribution.  When the cubic root is taken of low x values (values in the solid box), small 

differences between the values are magnified.  When the cubic root is taken of higher x 

values (regions in the dashed box), differences between the x values are reduced.  This 

reduced the heavy tails and right skewness and enhanced the left skewness of the initial 

residual histograms shown in Figure A.1.   
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Figure A.6. Plot of y=x1/3 (Plot adapted from http://mathematica.stackexchange.com).   
 
 

A.4. Analysis of variance on proximity ligation assays 

 Now that the data better approximated a normal distribution, a hierarchical 

ANOVA was performed for each PLA.  This nested the animals within the treatment and 

time, following the experimental design. Treatment, time, and individual animals were 

each tested to determine if they were significant contributors to total variability in data.  

For the PLAs of all PRRs, the treatment group was found to be a significant factor. For 

RIGI-I and MDA5 PLAs, time was also found to be a significant contributor.  The 

'multcompare' MATLAB function was then used to conduct pairwise comparisons among 

treatment groups and time points.  Findings found from each treatment group are shown 

in Chapter 3, in Figures 3.10-3.12. Here, we also show the effects of time (Figure A.7), 

which shows the mean and 95% confidence intervals for each time point, considering 

data collected at all treatment groups.  These plots allow us to distill more information 

from the collected data.   
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Figure A.7. Effect of time on activation of (A) TLR7 (B) MDA-5 and (C) RIG-I. Data is 
transformed to the cubed root. Mean values of the number of proximity ligation assay 
puncta per imaging frame and relative confidence intervals are shown. 
 
 

A.5. MATLAB scripts 

Below is the MATLAB code used for calculating JB statistic for multiple q values. 
 
load mda5.dat; mda5=mda5(:); 
load times.dat; 
load animal.dat; 
load treatment.dat; 
times=times(:);  
animal=animal(:);  
treatment=treatment(:); 
mynest = [0 0 0; 
                  0 0 0;  
                  1 1 0];   
mymodel =[0 0 0;   %intercept effect 
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                   1 0 0;   %treatment effect 
                   0 1 0;   %time  effect 
                   0 0 1;   %animal effect 
                   1 1 0];  %treatment * time effect (interaction) 
close all force;    
 
%Find transformation with the lowest JB statistic 
jabe = @(sample) length(sample)/6 * (skewness(sample)^2 + (kurtosis(sample)-3)^2/4 ); 
jaber=[]; 
 
for q = 0.02:0.01:0.5;  % define transformations data set 

[p tab stats]=anovan(mda5.^q , {treatment, times, animal}, ...;   
    'random', [3],... 
    'nested', mynest,... 
    'varnames', {'Treatment', 'Time', 'Animals'},... 
    'model', mymodel); 
  
y=stats.resid; 
  
jaber = [jaber jabe(stats.resid)]; 

end 
 
close all force 
 figure; 
 plot(0.02:0.01:.5, jaber,'o') 
 title('Jarque-Bera for RIGI PLA^q') 
 xlabel('q') 
 ylabel('Jarque-Bera') 
 
close all force 
 figure; 
 plot(0.02:0.01:.4, jaber,'o') %plot of JB statistic for all of q 
 
%% Show QQplot of data 
qqplot(stats.resid) 
title('qqplot for MDA-5 PLA ') 
set(gca, 'FontSize', 20) 
 
%% Show histogram of residuals  
figure; 
hist(stats.resid, 30) 
title('Distribution of Residuals for MDA5 PLA') 
xlabel('Residual') 
ylabel('Frequency') 
set(gca, 'FontSize', 20)
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Below is the MATLAB code used for performing the hierarchical ANOVA. 
 
load mda5.dat; mda5=mda5(:); 
load times.dat; 
load animal.dat; 
load treatment.dat; 
times=times(:);  
animal=animal(:);  
treatment=treatment(:); 
   
mynest = [0 0 0; 
                  0 0 0;  
                  1 1 0];   
%  
mymodel =[0 0 0;   %intercept effect 
                   1 0 0;   %treatment effect 
                   0 1 0;   %time  effect 
                   0 0 1;   %animal effect 
                   1 1 0];  %treatment * time effect (interaction) 
  
 close all force;    
 [p tab stats]=anovan(mda5.^(1/3) , {treatment, times, animal}, ...;   
    'random', [3],... 
    'nested', mynest,... 
    'varnames', {'Treatment', 'Time', 'Animals'},... 
    'model', mymodel); 
  
y=stats.resid; 
  
%%  
n= length(y); 
corrs=[] 
range = 0.1:0.05:2; 
for h = range 
c=corr(sort(y).^h, norminv([0.5/n :1/n :1])'); 
corrs=[corrs c]; 
end 
 
%% Perform multiple comparisons and calculate p values 
   [p tab stats]=anovan(mda5.^(1/3), {treatment, times, animal}, ... 
    'varnames', {'Treatment', 'Time','animal'},... 
    'model', 'linear'); 
figure; multcompare(stats, 'dimension',1) 
figure; multcompare(stats, 'dimension',2) 
figure; multcompare(stats, 'dimension',[1 2]) 
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APPENDIX B 
DNA TEMPLATES FOR IVT MRNA 

 
 
 
 Below are the sequences for the DNA templates used for preparation of IVT 

mRNA.  Prior to transcription, each sequence is digested with a restriction enzyme at the 

3' end. The sequence for the T7 RNA polymerase promoter is underlined. The restriction 

digestion site is bolded. After transcription, a poly(A) tail is added enzymatically.  

B.1 DNA Template for Ara h 2 
CTAATACGACTCACTATAGGGAGAGCCGCCACCATGGCCAAGCTGACCATCCTGGT
CGCCCTGGCCCTGTTCCTGCTCGCTGCCCACGCTTCTGCCAGACAGCAGTGGGAG
CTGCAGGGCGACAGAAGATGCCAGAGCCAGCTGGAAAGAGCCAACCTGAGGCCC
TGCGAGCAGCACCTGATGCAGAAGATCCAGCGGGACGAGGACAGCTACGAGAGG
GACCCCTACAGCCCCAGCCAGGACCCCTACTCCCCTAGCCCCTACGACAGAAGAG
GCGCTGGCTCCAGCCAACACCAAGAAAGATGCTGCAACGAGCTGAACGAGTTCGA
GAACAACCAGAGATGCATGTGCGAGGCTCTGCAGCAGATCATGGAAAACCAGAGC
GACAGACTGCAGGGCAGGCAGCAAGAACAGCAGTTCAAGAGAGAGCTGAGAAACC
TGCCCCAGCAGTGCGGCCTGAGAGCCCCCCAGAGATGCGACCTGGACGTGGAAA
GCGGCGGCGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTAC
AAGGATGACGATGACAAGTAGTGCGGCCGCAAAA 
 

B.2 DNA template for cytoplasmic ovalbumin 
TAATACGACTCACTATAGGCTAGCCTCGAGCCACCATGGGCTCCATCGGCGCAGC
AAGCATGGAATTTTGTTTTGATGTATTCAAGGAGCTCATCAATTCCTGGGTAGAAAG
TCAGACAAATGGAATTATCAGAAATGTCCTTCAGCCAAGCTCCGTGGATTCTCAAAC
TGCAATGGTTCTGGTTAATGCCATTGTCTTCAAAGGACTGTGGGAGAAAACATTTAA
GGATGAAGACACACAAGCAATGCCTTTCAGAGTGACTGAGCAAGAAAGCAAACCTG
TGCAGATGATGTACCAGATTGGTTTATTTAGAGTGGCATCAATGGCTTCTGAGAAAA
TGAAGATCCTGGAGCTTCCATTTGCCAGTGGGACAATGAGCATGTTGGTGCTGTTG
CCTGATGAAGTCTCAGGCCTTGAGCAGCTTGAGAGTATAATCAACTTTGAAAAACTG
ACTGAATGGACCAGTTCTAATGTTATGGAAGAGAGGAAGATCAAAGTGTACTTACCT
CGCATGAAGATGGAGGAAAAATACAACCTCACATCTGTCTTAATGGCTATGGGCAT
TACTGACGTGTTTAGCTCTTCAGCCAATCTGTCTGGCATCTCCTCAGCAGAGAGCC
TGAAGATATCTCAAGCTGTCCATGCAGCACATGCAGAAATCAATGAAGCAGGCAGA
GAGGTGGTAGGGTCAGCAGAGGCTGGAGTGGATGCTGCAAGCGTCTCTGAAGAAT
TTAGGGCTGACCATCCATTCCTCTTCTGTATCAAGCACATCGCAACCAACGCCGTT
CTCTTCTTTGGCAGATGTGTTTCCCCTTAAGGCTGCCTTCTGCGGGGCTTGCCTTC
TGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCC
TGAGTAGGAAGGCGGCCGCTTT 



www.manaraa.com

118 
 

APPENDIX C 
PRIMER SEQUENCES FOR QRT-PCR 

 
 
 
Below are the primer sequences used for qRT-PCR, primarily for experiments in Chapter 
2.  All other primers used were purchased from QIAGEN and the sequences were not 
provided. 
 
Table C.1 Primer sequences used in Chapter 2 
Target Forward Primer Reverse Primer Design RefSeq 

IVT mRNA Specific Primers     

Ovalbumin GCTCCATCGGCGCAGCAAGC CCACGGAGCTTGGCTGAAGGACA n/a 

Ara h 2  CTGCTCGCTGCCCACGCTTCT TCGCAGGGCCTCAGGTTGGCT n/a 

Human Specific Primers     
GAPDH 
(human) TGGACCTGACCTGCCGTCTA TAGCCCAGGATGCCCTTGA NM_001289745.1| 

Mouse Specific Primers     

Actb CCCTAAGGCCAACCGTGAAA CAGCCTGGATGGCTACGTAC NM_007393.3 

IL27B AAGTACCGACTCCGCTACC GGTGAAAGTCGTGGCTTCAA NM_015766.2 

Fcgr1 ATCTGCAGGAGTGTCCATCA AGATGACACGGATGCTCTCA NM_010186.5 

Gapdh AGACGGCCGCATCTTCTT TTCACACCGACCTTCACCAT NM_008084.2 

IFNalpha TCCACCAGCAGCTCAATGAC TCTTCCTGGGTCAGGGGAAA NM_010502.2 

Ifnb1 AGCTCCAAGAAAGGACGAACA TGGATGGCAAAGGCAGTGTA NM_010510.1 

Il10 AAAGGACCAGCTGGACAACA TAAGGCTTGGCAACCCAAGTA NM_010548.2 

Il12a AAACCAGCACATTGAAGACC GGAAGAAGTCTCTCTAGTAGCC NM_001159424.1 

Il12b ATCGTTTTGCTGGTGTCTCC GGAGTCCAGTCCACCTCTAC NM_008352.2 

Il18 CAAAGAAAGCCGCCTCAAAC GACGCAAGAGTCTTCTGACA NM_008360.1 

Il1a AGATGGCCAAAGTTCCTGAC AGAGATGGTCAATGGCAGAAC NM_010554.4 

Il1b TGGCAACTGTTCCTGAACTCA GGGTCCGTCAACTTCAAAGAAC NM_008361.3 

Il1rn AGCTCATTGCTGGGTACTTACA TGGATGCCCAAGAACACACTA NM_001039701.3 

Il2 CCCAGGATGCTCACCTTCAAA CCGCAGAGGTCCAAGTTCA NM_008366.3 

Il4 ACGGAGATGGATGTGCCAAA GCACCTTGGAAGCCCTACA NM_021283.2 

Il6 CCAGAAACCGCTATGAAGTTCC GTTGTCACCAGCATCAGTCC NM_031168.1 

Nos2 GAGGAGCAGGTGGAAGACTA GGAAAAGACTGCACCGAAGATA NM_010927.3 

Rere AAGGAGCTGCTTCCCAGTA GCCTCTGGTGTTTTCTTCCA NM_001085492.1 

RPL13a CATTGTGGCCAAGCAGGTA CCAGAAATGTTGATGCCTTCAC NM_009438.5 

Tgfb1 GCTGCGCTTGCAGAGATTAA GTAACGCCAGGAATTGTTGCTA NM_011577.1 

Tnf CAAATGGCCTCCCTCTCATCA TGGGCTACAGGCTTGTCAC NM_013693.2 
 

https://www.ncbi.nlm.nih.gov/nucleotide/576583518?report=genbank&log$=nuclalign&blast_rank=15&RID=7GM618YM01R
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APPENDIX D 
ANTIVIRAL PCR ARRAY DATA 

 
 
 
Below are the average calculated fold changes of gene expression from the PCR array 
data in Chapter 4. In Table D.1, fold changes are calculated relative to gene expression 
by cells treated with Lipofectamine 2000 only. RAW264.7 cells were used for the 
experiment.  
 
Table D.1. Fold change of antiviral genes after transfection with IVT mRNA  

Gene 
Symbol Refseq AUGC AψGC AM1YGC 
Aim2 NM_001013779 1.9354 0.4638 0.1473 
Atg12 NM_026217 1.5949 3.3048 2.3828 
Atg5 NM_053069 1.7018 0.523 0.1533 
Azi2 NM_013727 0.3609 0.041 0.0216 
Card9 NM_001037747 0.839 1.5683 1.3048 
Casp1 NM_009807 0.8286 0.1829 0.0993 
Casp8 NM_009812 2.2761 3.0357 2.6649 
Ccl3 NM_011337 2.8055 0.309 0.1854 
Ccl4 NM_013652 6.8036 0.2844 0.2233 
Ccl5 NM_013653 6.98 1.1511 0.7222 
Cd40 NM_011611 745.462 299.5782 428.8825 
Cd80 NM_009855 4.2811 1.5111 0.2376 
Cd86 NM_019388 14.4949 9.1289 8.2766 
Chuk NM_007700 0.6498 1.2741 4.4614 
Cnpy3 NM_028065 0.891 0.2447 0.0759 
Ctsb NM_007798 1.059 1.0851 0.4776 
Ctsl NM_009984 0.2879 0.0274 0.0115 
Ctss NM_021281 2.139 1.4585 0.7444 
Cxcl10 NM_021274 24.2982 1.7197 2.4267 
Cxcl11 NM_019494 15.9105 10.3207 2.5225 
Cxcl9 NM_008599 2.5156 1.0394 3.5395 
Cyld NM_173369 2.6095 2.3353 1.1495 
Dak NM_145496 1.1168 2.4204 0.3815 
Ddx3x NM_010028 1.0247 1.4682 0.8716 
Ddx58 NM_172689 9.6414 2.4742 1.2648 
Dhx58 NM_030150 1.9617 0.1867 0.1723 
Fadd NM_010175 1.6671 0.5418 0.1239 
Fos NM_010234 2.6467 0.5763 0.2182 



www.manaraa.com

120 
 

Hsp90aa1 NM_010480 1.4161 1.8853 1.1366 
Ifih1 NM_027835 5.0718 1.8108 2.0456 
Ifna2 NM_010503 62.8081 2.3347 10.1487 
Ifnar1 NM_010508 0.776 1.7578 1.4636 
Ifnb1 NM_010510 169.6908 13.1087 25.5929 
Ikbkb NM_010546 1.3678 0.4789 0.1726 
Il12a NM_008351 0.983 0.7755 5.9258 
Il12b NM_008352 0.9631 0.6985 5.9258 
Il15 NM_008357 7.7074 0.4765 0.2376 
Il18 NM_008360 6.6631 0.9394 0.3976 
Il1b NM_008361 140.3898 42.2601 24.0378 
Il6 NM_031168 2.3951 0.479 5.9258 
Irak1 NM_008363 2.2568 0.8373 0.2824 
Irf3 NM_016849 0.8138 0.1096 0.043 
Irf5 NM_012057 0.6536 0.831 2.5204 
Irf7 NM_016850 2.5538 1.1859 4.1795 
Isg15 NM_015783 14.9381 3.3808 5.9083 
Jun NM_010591 1.5443 1.8624 10.3427 
Map2k1 NM_008927 1.9362 2.409 1.3082 
Map2k3 NM_008928 1.2022 1.3765 2.343 
Map3k1 NM_011945 2.127 2.1433 0.1754 
Map3k7 NM_172688 0.97 0.3573 0.1573 
Mapk1 NM_011949 1.3775 0.5079 0.1854 
Mapk14 NM_011951 1.6515 1.2865 0.3836 
Mapk3 NM_011952 1.1035 0.653 0.3026 
Mapk8 NM_016700 2.3516 1.2322 0.3445 
Mavs NM_144888 0.256 1.2835 0.9801 
Mefv NM_019453 1.5422 2.0631 3.4909 
Mx1 NM_010846 158.5699 9.9972 6.6625 
Myd88 NM_010851 0.3698 0.4873 2.2214 
Nfkb1 NM_008689 1.498 1.7318 1.4879 
Nfkbia NM_010907 1.953 1.4492 4.9488 
Nlrp3 NM_145827 3.2236 1.958 0.8855 
Nod2 NM_145857 1.6467 0.1009 0.0233 
Oas2 NM_145227 1.1808 1.0424 2.815 
Pin1 NM_023371 1.4961 0.4644 0.1928 
Pstpip1 NM_011193 1.6748 1.3874 0.7922 
Pycard NM_023258 0.1786 0.0842 0.007 
Rela NM_009045 0.4029 1.2439 1.6087 
Ripk1 NM_009068 0.5214 1.5786 2.6328 
Spp1 NM_009263 1.6448 1.9139 2.0449 
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Stat1 NM_009283 5.1479 1.3076 0.9869 
Sugt1 NM_026474 1.0645 0.2564 0.0897 
Tank NM_011529 1.233 0.5734 0.3255 
Tbk1 NM_019786 1.0736 1.46 0.8444 
Tbkbp1 NM_198100 1.047 0.9623 0.3034 
Ticam1 NM_174989 0.5411 0.2306 1.7396 
Tlr3 NM_126166 3.0583 9.6668 7.6708 
Tlr7 NM_133211 0.4564 1.9068 2.6746 
Tlr8 NM_133212 0.4921 24.3462 6.5493 
Tlr9 NM_031178 0.6565 0.6127 2.0639 
Tnf NM_013693 2.5682 1.1852 5.804 
Tradd NM_001033161 2.2947 0.706 0.2172 
Traf3 NM_011632 1.1049 2.4589 2.0381 
Traf6 NM_009424 1.6417 3.9082 5.5084 
Trim25 NM_009546 0.4777 0.6304 2.3975 

 
 
Table D.2. Fold regulation of antiviral genes over sham injection control following IVT 
mRNA injection in anterior tibialis  

 
Refseq 

RNA+CL264 
(Tethered) 

RNA+CL264 
(cocktail) RNA CL264 

Aim2 NM_001013779 2.4711 3.5283 2.2396 -1.6698 
Atg12 NM_026217 -1.5054 -1.4749 -1.515 -1.1888 
Atg5 NM_053069 -1.7195 -1.569 -2.3139 -2.3896 
Azi2 NM_013727 -1.2638 1.4522 -1.0155 -1.8597 
Card9 NM_001037747 2.1643 2.2388 1.0898 1.6123 
Casp1 NM_009807 9.4321 13.9943 8.8204 1.4084 
Casp8 NM_009812 2.4354 2.4349 2.6804 -1.505 
Ccl3 NM_011337 369.813 135.5505 58.6417 7.6069 
Ccl4 NM_013652 719.616 390.5616 203.6388 9.9239 
Ccl5 NM_013653 423.6943 374.7567 202.8934 3.5083 
Cd40 NM_011611 82.3805 79.4861 37.2352 -1.6808 
Cd80 NM_009855 2.9911 5.4615 10.0874 3.0693 
Cd86 NM_019388 7.645 7.4741 9.5735 1.5119 
Chuk NM_007700 -1.185 -2.2845 -1.718 -1.3205 
Cnpy3 NM_028065 -5.6779 -2.0087 -10.7389 -2.5724 
Ctsb NM_007798 -1.5487 -1.4271 -1.3225 1.2807 
Ctsl NM_009984 -1.4434 1.09 -1.3563 -1.4204 
Ctss NM_021281 2.3797 2.7715 2.1744 -1.8918 
Cxcl10 NM_021274 1199.5084 1011.1903 676.5128 5.0313 
Cxcl11 NM_019494 83.7961 24.0028 14.7843 1.2188 
Cxcl9 NM_008599 1330.1414 1175.6172 572.9969 2.3168 
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Cyld NM_173369 -1.3279 -1.3852 -1.8162 -1.1029 
Dak NM_145496 -1.3272 1.012 1.655 2.6455 
Ddx3x NM_010028 -1.4529 -1.535 -1.2187 1.1237 
Ddx58 NM_172689 6.7027 7.324 4.5696 -1.2235 
Dhx58 NM_030150 23.5987 44.4451 33.0014 -2.1372 
Fadd NM_010175 -2.4128 -2.9857 -5.6917 -2.9352 
Fos NM_010234 2.8412 2.1206 1.2136 -1.2498 
Hsp90aa1 NM_010480 -1.079 -1.1422 -1.4312 1.2709 
Ifih1 NM_027835 11.2064 11.7689 10.2912 -2.1051 
Ifna2 NM_010503 -1.5801 -3.1003 -1.8013 -1.5771 
Ifnar1 NM_010508 -1.2887 -2.9563 -3.2947 -3.5713 
Ifnb1 NM_010510 6.2894 6.143 7.9089 1.6104 
Ikbkb NM_010546 -1.5774 -1.4846 -2.3609 -4.4045 
Il12a NM_008351 -2.8239 -3.2651 -3.7653 -3.2804 
Il12b NM_008352 8.8954 -1.1695 -1.4436 1.2286 
Il15 NM_008357 1.2538 1.6465 1.0026 -1.661 
Il18 NM_008360 7.919 2.6717 2.8797 -2.3542 
Il1b NM_008361 1125.1571 331.1941 137.3022 114.3997 
Il6 NM_031168 947.4906 138.236 60.1918 5.0038 
Irak1 NM_008363 -1.8767 -1.9458 -3.2023 -1.2527 
Irf3 NM_016849 -2.0045 -1.4099 -2.1628 -2.2411 
Irf5 NM_012057 1.454 5.0626 3.8562 -1.2582 
Irf7 NM_016850 56.06 74.5723 55.4838 2.1727 
Isg15 NM_015783 178.5567 258.69 252.338 17.175 
Jun NM_010591 1.0766 -1.0728 1.5123 -1.2425 
Map2k1 NM_008927 -1.3574 -1.6154 -1.9206 -1.2224 
Map2k3 NM_008928 1.0329 1.1469 1.0479 -1.111 
Map3k1 NM_011945 -1.4688 -1.6514 -2.6412 -2.6993 
Map3k7 NM_172688 -1.9593 -1.6183 -2.5392 -1.5975 
Mapk1 NM_011949 -1.7505 -1.6572 -2.6415 -1.4522 
Mapk14 NM_011951 -2.0197 -1.8597 -3.0425 -1.4147 
Mapk3 NM_011952 -8.1512 -4.4548 -3.6257 -1.5288 
Mapk8 NM_016700 -1.7364 -1.9116 -3.5029 -1.2586 
Mavs NM_144888 -3.9239 -1.6419 -2.2337 -3.5534 
Mefv NM_019453 29.983 10.5731 4.4008 10.4909 
Mx1 NM_010846 1144.4342 1678.6093 1423.8644 14.7032 
Myd88 NM_010851 38.1556 24.4941 25.9858 -3.7954 
Nfkb1 NM_008689 1.1372 -1.2142 -1.2079 -1.2745 
Nfkbia NM_010907 2.6319 1.3794 1.4599 1.1301 
Nlrp3 NM_145827 83.6227 4.2805 3.8934 2.693 
Nod2 NM_145857 8.0679 9.3562 4.8564 -2.4341 
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Oas2 NM_145227 126.7129 139.7291 63.4598 1.7493 
Pin1 NM_023371 -1.5423 -1.3688 -2.1747 -1.5609 
Pstpip1 NM_011193 3.6209 10.5955 10.9122 4.0768 
Pycard NM_023258 2.5194 3.8527 3.3056 -1.4017 
Rela NM_009045 -1.0132 1.5992 1.4014 -1.7475 
Ripk1 NM_009068 3.0326 -1.0465 3.839 -4.2023 
Spp1 NM_009263 -1.1818 -3.9357 -12.5284 -1.578 
Stat1 NM_009283 3.1908 4.2142 2.9279 -1.098 
Sugt1 NM_026474 -1.9284 -1.3924 -2.0554 -1.327 
Tank NM_011529 -1.4031 -1.2076 -1.5692 -1.5944 
Tbk1 NM_019786 1.2727 1.2941 1.6197 1.0414 
Tbkbp1 NM_198100 -2.453 -2.171 -5.6205 -1.5131 
Ticam1 NM_174989 -1.3535 -3.2897 -3.0107 -5.9365 
Tlr3 NM_126166 70.5748 60.523 97.2897 1.1955 
Tlr7 NM_133211 -3.2334 -3.1117 -3.3507 -1.189 
Tlr8 NM_133212 1.3536 9.4079 4.2909 1.0652 
Tlr9 NM_031178 5.4253 7.1368 4.1323 1.408 
Tnf NM_013693 35.4211 2.2049 5.9195 -1.3416 
Tradd NM_001033161 -2.78 -4.6513 -8.2109 -4.8998 
Traf3 NM_011632 -9.9291 -2.2777 -6.1218 -5.4464 
Traf6 NM_009424 2.4693 -1.6374 -1.2268 -2.5581 
Trim25 NM_009546 16.6749 22.8674 17.1369 1.1073 
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